{"title":"Tree-Degenerate Graphs and Nested Dependent Random Choice","authors":"T. Jiang, Sean Longbrake","doi":"10.1137/22m1483554","DOIUrl":null,"url":null,"abstract":"The celebrated dependent random choice lemma states that in a bipartite graph an average vertex (weighted by its degree) has the property that almost all small subsets $S$ in its neighborhood has common neighborhood almost as large as in the random graph of the same edge-density. Two well-known applications of the lemma are as follows. The first is a theorem of F\\\"uredi and of Alon, Krivelevich, and Sudakov showing that the maximum number of edges in an $n$-vertex graph not containing a fixed bipartite graph with maximum degree at most $r$ on one side is $O(n^{2-1/r})$. This was recently extended by Grzesik, Janzer and Nagy to the family of so-called $(r,t)$-blowups of a tree. A second application is a theorem of Conlon, Fox, and Sudakov, confirming a special case of a conjecture of Erd\\H{o}s and Simonovits and of Sidorenko, showing that if $H$ is a bipartite graph that contains a vertex complete to the other part and $G$ is a graph then the probability that the uniform random mapping from $V(H)$ to $V(G)$ is a homomorphismis at least $\\left[\\frac{2|E(G)|}{|V(G)|^2}\\right]^{|E(H)|}$. In this note, we introduce a nested variant of the dependent random choice lemma, which might be of independent interest. We then apply it to obtain a common extension of the theorem of Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy, regarding Tur\\'an and Sidorenko properties of so-called tree-degenerate graphs.","PeriodicalId":21749,"journal":{"name":"SIAM J. Discret. Math.","volume":"65 1","pages":"1805-1817"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM J. Discret. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1483554","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The celebrated dependent random choice lemma states that in a bipartite graph an average vertex (weighted by its degree) has the property that almost all small subsets $S$ in its neighborhood has common neighborhood almost as large as in the random graph of the same edge-density. Two well-known applications of the lemma are as follows. The first is a theorem of F\"uredi and of Alon, Krivelevich, and Sudakov showing that the maximum number of edges in an $n$-vertex graph not containing a fixed bipartite graph with maximum degree at most $r$ on one side is $O(n^{2-1/r})$. This was recently extended by Grzesik, Janzer and Nagy to the family of so-called $(r,t)$-blowups of a tree. A second application is a theorem of Conlon, Fox, and Sudakov, confirming a special case of a conjecture of Erd\H{o}s and Simonovits and of Sidorenko, showing that if $H$ is a bipartite graph that contains a vertex complete to the other part and $G$ is a graph then the probability that the uniform random mapping from $V(H)$ to $V(G)$ is a homomorphismis at least $\left[\frac{2|E(G)|}{|V(G)|^2}\right]^{|E(H)|}$. In this note, we introduce a nested variant of the dependent random choice lemma, which might be of independent interest. We then apply it to obtain a common extension of the theorem of Conlon, Fox, and Sudakov and the theorem of Grzesik, Janzer, and Nagy, regarding Tur\'an and Sidorenko properties of so-called tree-degenerate graphs.