{"title":"Statistical string similarity model for information linkage","authors":"A. Takasu","doi":"10.2201/NIIPI.2009.6.7","DOIUrl":null,"url":null,"abstract":"This paper proposes a statistical string similarity model for approximate matching in information linkage. The proposed similarity model is an extension of hidden Markov model and its learnable ability realizes string matching function adaptable to various information sources. The main contribution of this paper is to develop an efficient learning algorithm for estimating parameters of the statistical similarity model. The proposed algorithm is based on the Expectation-Maximization (EM) technique where dynamic programing technique is used to update parameters in EM process.","PeriodicalId":91638,"journal":{"name":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","volume":"39 1","pages":"57"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"... Proceedings of the ... IEEE International Conference on Progress in Informatics and Computing. IEEE International Conference on Progress in Informatics and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2201/NIIPI.2009.6.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a statistical string similarity model for approximate matching in information linkage. The proposed similarity model is an extension of hidden Markov model and its learnable ability realizes string matching function adaptable to various information sources. The main contribution of this paper is to develop an efficient learning algorithm for estimating parameters of the statistical similarity model. The proposed algorithm is based on the Expectation-Maximization (EM) technique where dynamic programing technique is used to update parameters in EM process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
信息链接的统计字符串相似度模型
提出了一种用于信息链接近似匹配的统计字符串相似度模型。所提出的相似度模型是隐马尔可夫模型的扩展,其可学习能力实现了适应各种信息源的字符串匹配功能。本文的主要贡献是开发了一种有效的学习算法来估计统计相似模型的参数。该算法以期望最大化(EM)技术为基础,采用动态规划技术对EM过程中的参数进行更新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A convolutional neural network based approach towards real-time hard hat detection Report on the analyses and the applications of a large-scale news video archive: NII TV-RECS Large-scale cross-media analysis and mining from socially curated contents Scalable Approaches for Content -based Video Retrieval 湘南会議 The future of multimedia analysis and mining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1