Effect of Substrate Pre-carburizing on Properties of TiN (Ti) Hard Coatings Deposited on Ti-6Al-4V Alloy

IF 0.6 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY 稀有金属材料与工程 Pub Date : 2018-11-01 DOI:10.1016/S1875-5372(18)30235-2
Wang Yanfeng , Li Zhengxian , Li Wei , Du Jihong , Ji Shouchang , Zhang Changwei
{"title":"Effect of Substrate Pre-carburizing on Properties of TiN (Ti) Hard Coatings Deposited on Ti-6Al-4V Alloy","authors":"Wang Yanfeng ,&nbsp;Li Zhengxian ,&nbsp;Li Wei ,&nbsp;Du Jihong ,&nbsp;Ji Shouchang ,&nbsp;Zhang Changwei","doi":"10.1016/S1875-5372(18)30235-2","DOIUrl":null,"url":null,"abstract":"<div><p>Interface fracture often occurs in systems of soft substrate and hard coatings during the service process, which is related to the weak interface strength and the unstable expansion of cracks along the interface induced by the residual thermal stress. The residual thermal stress mainly comes from the mismatch of thermal physical properties between matrix and hard coatings. In this study, a gradient carburized layer was prepared on TC4 substrate before the deposition of TiN(Ti) coatings using double glow plasma carburization. And then the mono- and multilayer TiN(Ti) coatings were synthesized on the carburized layer, forming composite hard coatings. The effect of substrate carburizing on properties of coatings was studied. The results show that the composite coatings' hardness can be increased nearly 2 times and the bonding strength is enhanced to over 80 N, compared with that of mono-and multilayer TiN(Ti) coatings. Also the interface brittle fracture tendency is restrained obviously by the hardened substrate, and the coordinative deformation ability of the coating at extra load is optimized. The composite coating composed of pre-carburized layer and TiN hard coating shows a higher strength and toughness.</p></div>","PeriodicalId":21056,"journal":{"name":"稀有金属材料与工程","volume":"47 11","pages":"Pages 3295-3300"},"PeriodicalIF":0.6000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1875-5372(18)30235-2","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"稀有金属材料与工程","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1875537218302352","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

Abstract

Interface fracture often occurs in systems of soft substrate and hard coatings during the service process, which is related to the weak interface strength and the unstable expansion of cracks along the interface induced by the residual thermal stress. The residual thermal stress mainly comes from the mismatch of thermal physical properties between matrix and hard coatings. In this study, a gradient carburized layer was prepared on TC4 substrate before the deposition of TiN(Ti) coatings using double glow plasma carburization. And then the mono- and multilayer TiN(Ti) coatings were synthesized on the carburized layer, forming composite hard coatings. The effect of substrate carburizing on properties of coatings was studied. The results show that the composite coatings' hardness can be increased nearly 2 times and the bonding strength is enhanced to over 80 N, compared with that of mono-and multilayer TiN(Ti) coatings. Also the interface brittle fracture tendency is restrained obviously by the hardened substrate, and the coordinative deformation ability of the coating at extra load is optimized. The composite coating composed of pre-carburized layer and TiN hard coating shows a higher strength and toughness.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基体预渗碳对Ti- 6al - 4v合金TiN (Ti)硬质镀层性能的影响
软基-硬涂层体系在使用过程中经常发生界面断裂,这与界面强度弱和残余热应力诱导的界面裂纹沿界面不稳定扩展有关。残余热应力主要来自于基体与硬质涂层热物理性能的不匹配。本研究采用双辉光等离子渗碳技术,在沉积TiN(Ti)涂层之前,在TC4衬底上制备了梯度渗碳层。然后在渗碳层上合成单层和多层TiN(Ti)涂层,形成复合硬质涂层。研究了基体渗碳对镀层性能的影响。结果表明:与单层和多层TiN(Ti)涂层相比,复合涂层硬度提高近2倍,结合强度提高到80 N以上;硬化基体明显抑制了界面脆性断裂趋势,优化了涂层在外加载荷下的协调变形能力。由预渗碳层和TiN硬镀层组成的复合镀层具有较高的强度和韧性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
稀有金属材料与工程
稀有金属材料与工程 工程技术-材料科学:综合
CiteScore
1.30
自引率
57.10%
发文量
17973
审稿时长
4.2 months
期刊介绍:
期刊最新文献
High Temperature Oxidation Behavior of Co-Cr-Y2O3 Modified Aluminide Coatings on Ni-based Superalloy by Pack Cementation Process First-principles Study on Effect of Pressure and Temperature on Mechanical, Thermodynamic Properties, and Electronic Structure of Ni3Al Alloy Numerical Simulation of the Influence of Electrode Shrinkage Cavity on ESR Process of IN718 Alloy Friction and Wear Performance of in-Situ (TiC+TiB)/Ti6Al4V Composites Effect of Benzotriazole on Corrosion Resistance of Al2O3/Cerium Oxide Composite Films on the Al Surface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1