Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications

J. Costa, B. F. Lucas, Ana Gabrielle Pires Alvarenga, Juliana Botelho Moreira, M. G. de Morais
{"title":"Microalgae Polysaccharides: An Overview of Production, Characterization, and Potential Applications","authors":"J. Costa, B. F. Lucas, Ana Gabrielle Pires Alvarenga, Juliana Botelho Moreira, M. G. de Morais","doi":"10.3390/polysaccharides2040046","DOIUrl":null,"url":null,"abstract":"Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.","PeriodicalId":18775,"journal":{"name":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Polysaccharides in Drug Delivery and Biomedical Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/polysaccharides2040046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Microalgae and cyanobacteria are photosynthetic microorganisms capable of synthesizing several biocompounds, including polysaccharides with antioxidant, antibacterial, and antiviral properties. At the same time that the accumulation of biomolecules occurs, microalgae can use wastewater and gaseous effluents for their growth, mitigating these pollutants. The increase in the production of polysaccharides by microalgae can be achieved mainly through nutritional limitations, stressful conditions, and/or adverse conditions. These compounds are of commercial interest due to their biological and rheological properties, which allow their application in various sectors, such as pharmaceuticals and foods. Thus, to increase the productivity and competitiveness of microalgal polysaccharides with commercial hydrocolloids, the cultivation parameters and extraction/purification processes have been optimized. In this context, this review addresses an overview of the production, characterization, and potential applications of polysaccharides obtained by microalgae and cyanobacteria. Moreover, the main opportunities and challenges in relation to obtaining these compounds are highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微藻多糖:生产、表征和潜在应用综述
微藻和蓝藻是能够合成多种生物化合物的光合微生物,包括具有抗氧化、抗菌和抗病毒特性的多糖。在发生生物分子积累的同时,微藻可以利用废水和气态流出物进行生长,减轻这些污染物。微藻多糖产量的增加主要可以通过营养限制、应激条件和/或不利条件来实现。这些化合物由于其生物和流变特性而具有商业价值,这使得它们可以应用于制药和食品等各个领域。因此,为了提高微藻多糖与商业水胶体的生产效率和竞争力,对培养参数和提取纯化工艺进行了优化。在此背景下,本文综述了由微藻和蓝藻获得的多糖的生产、表征和潜在应用。此外,还强调了与获得这些化合物有关的主要机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient (Bio)emulsification/Degradation of Crude Oil Using Cellulose Nanocrystals Advancing Paper Industry Applications with Extruded Cationic Wheat Starch as an Environmentally Friendly Biopolymer Algal Polysaccharides-Based Nanomaterials: General Aspects and Potential Applications in Food and Biomedical Fields Enzymatic Treatment of Ferulated Arabinoxylans from Distillers Dried Grains with Solubles: Influence on the Fabrication of Covalent Electro-Sprayed Nanoparticles In Vitro Biological Properties of Cyclodextrin-Based Polymers: Interaction with Human Serum Albumin, Red Blood Cells and Bacteria
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1