Computational characterization of millimetre-wave heat exchangers with an AlN:Mo susceptor of multiple cylindrical elements

IF 0.9 4区 工程技术 Q4 ENGINEERING, CHEMICAL Journal of Microwave Power and Electromagnetic Energy Pub Date : 2022-01-02 DOI:10.1080/08327823.2022.2029120
C. M. Hogan, B. Hoff, I. Rittersdorf, V. Yakovlev
{"title":"Computational characterization of millimetre-wave heat exchangers with an AlN:Mo susceptor of multiple cylindrical elements","authors":"C. M. Hogan, B. Hoff, I. Rittersdorf, V. Yakovlev","doi":"10.1080/08327823.2022.2029120","DOIUrl":null,"url":null,"abstract":"Abstract A concept for a millimetre-wave (MMW) heat exchanger (HX) featuring AlN:Mo ceramic composite structures as electromagnetic absorbing elements (susceptors) has been recently introduced as a receiving device in power beaming applications. Earlier computational studies of electromagnetic and thermal processes have shown reasonable energy efficiency and exceptional uniformity of MMW-induced temperature fields in a single cubic susceptor with concentration of Mo doping on the level of 3–4% by volume. As part of ongoing research, a MMW HX comprised of an array of cylindrical susceptors is proposed to potentially enable increased robustness against thermal stress and reduced manufacturing cost. In this paper, we computationally study the effects driven by such a change and demonstrate feasibility of the designs based on multiple cylinders. We present the output of electromagnetic and coupled electromagnetic-thermal simulations of a prospective physical prototype of a HX with five cylinders on a square metal base plate. Three alternative layouts with four, nine, and sixteen cylindrical elements that are suggested by the highest density packing of equal circles in a square are also analyzed. It is shown that, in comparison with the previously studied case of a single cubic susceptor, energy efficiency of all systems with Mo = 3–4% is down from 50–55% to 35–45%. While temperature distribution within each individual cylinder remains highly uniform, maximum temperatures of different cylinders may be different by up to 30–40 °C; when the angle of incidence deviates from normal, this difference further increases: e.g. when the angle is 10°, in the sixteen-cylinder system, it may reach 120–130 °C.","PeriodicalId":16556,"journal":{"name":"Journal of Microwave Power and Electromagnetic Energy","volume":"14 1","pages":"18 - 36"},"PeriodicalIF":0.9000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microwave Power and Electromagnetic Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/08327823.2022.2029120","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract A concept for a millimetre-wave (MMW) heat exchanger (HX) featuring AlN:Mo ceramic composite structures as electromagnetic absorbing elements (susceptors) has been recently introduced as a receiving device in power beaming applications. Earlier computational studies of electromagnetic and thermal processes have shown reasonable energy efficiency and exceptional uniformity of MMW-induced temperature fields in a single cubic susceptor with concentration of Mo doping on the level of 3–4% by volume. As part of ongoing research, a MMW HX comprised of an array of cylindrical susceptors is proposed to potentially enable increased robustness against thermal stress and reduced manufacturing cost. In this paper, we computationally study the effects driven by such a change and demonstrate feasibility of the designs based on multiple cylinders. We present the output of electromagnetic and coupled electromagnetic-thermal simulations of a prospective physical prototype of a HX with five cylinders on a square metal base plate. Three alternative layouts with four, nine, and sixteen cylindrical elements that are suggested by the highest density packing of equal circles in a square are also analyzed. It is shown that, in comparison with the previously studied case of a single cubic susceptor, energy efficiency of all systems with Mo = 3–4% is down from 50–55% to 35–45%. While temperature distribution within each individual cylinder remains highly uniform, maximum temperatures of different cylinders may be different by up to 30–40 °C; when the angle of incidence deviates from normal, this difference further increases: e.g. when the angle is 10°, in the sixteen-cylinder system, it may reach 120–130 °C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多圆柱单元AlN:Mo毫米波热交换器的计算特性
摘要:一种以AlN:Mo陶瓷复合结构作为电磁吸收元件的毫米波(MMW)换热器(HX)的概念最近被提出,作为一种接收装置应用于电力集束。早期对电磁和热过程的计算研究表明,当Mo掺杂浓度为体积的3-4%时,毫米波诱导的单立方电纳温度场具有合理的能量效率和优异的均匀性。作为正在进行的研究的一部分,一种毫米波HX由一系列圆柱形敏感器组成,可以提高抗热应力的稳健性,降低制造成本。在本文中,我们通过计算研究了这种变化所带来的影响,并论证了基于多气缸的设计的可行性。我们给出了在方形金属基板上具有五个圆柱体的HX的预期物理原型的电磁和耦合电磁热模拟的输出。此外,还分析了四、九、十六圆柱形元素的三种可选布局,这些元素都是由正方形中等距圆的最高密度包装所建议的。结果表明,与先前研究的单立方电纳相比,Mo = 3-4%时,所有系统的能量效率都从50-55%下降到35-45%。虽然每个钢瓶内的温度分布保持高度均匀,但不同钢瓶的最高温度可能相差30-40°C;当入射角偏离法向时,这种差异进一步增大:例如,当角度为10°时,在16缸系统中,它可能达到120-130°C。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Microwave Power and Electromagnetic Energy
Journal of Microwave Power and Electromagnetic Energy ENGINEERING, CHEMICAL-ENGINEERING, ELECTRICAL & ELECTRONIC
CiteScore
2.50
自引率
6.70%
发文量
21
期刊介绍: The Journal of the Microwave Power Energy (JMPEE) is a quarterly publication of the International Microwave Power Institute (IMPI), aimed to be one of the primary sources of the most reliable information in the arts and sciences of microwave and RF technology. JMPEE provides space to engineers and researchers for presenting papers about non-communication applications of microwave and RF, mostly industrial, scientific, medical and instrumentation. Topics include, but are not limited to: applications in materials science and nanotechnology, characterization of biological tissues, food industry applications, green chemistry, health and therapeutic applications, microwave chemistry, microwave processing of materials, soil remediation, and waste processing.
期刊最新文献
Editor’s message: Aspects of composing computational models of microwave processes Dielectric properties of honey-water solutions over broad frequency range Effect of vermicompost additive on physical, chemical and dielectric properties of soil and its modeling The combined effect of active packaging and relative phase sweeping on microwave heating performance in a dual-port solid-state system Editor’s message: attempts to place communication applications as ISM ones
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1