Lie-Ding Shiau , Keng-Fu Liu , Shyue-Ming Jang , Shoei-Chin Wu
{"title":"Separation of diethylbenzene isomers by distillative freezing","authors":"Lie-Ding Shiau , Keng-Fu Liu , Shyue-Ming Jang , Shoei-Chin Wu","doi":"10.1016/j.jcice.2007.11.008","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the close boiling points of the mixed diethylbenzene (DEB) isomers, it is rather complicated to separate them by distillation. A new separation technique, distillative freezing (DF), is successfully applied to separate <em>p</em>-DEB from the diethylbenzene isomers in this study. Basically, the DF process operates at a triple point condition, in which the liquid mixture is simultaneously vaporized and solidified due to the three-phase equilibrium. It results in the formation of pure crystals along with the liquid phase and vapor phase of the mixtures. The process can be continued until the liquid phase is completely eliminated and only the pure solid crystals remain in the feed. A model, whereby the DF process is simulated in a series of equilibrium stage operations, is proposed to direct the DF operation. In the model, each stage is operated under an adiabatic condition at a three-phase equilibrium. The experiments show that, in the <em>p</em>-DEB/<em>m</em>-DEB mixtures, <em>p</em>-DEB can be purified from 80% to 99% through several DF operations with the experimental recovery rate of <em>p</em>-DEB in one DF operation ranging from 58% to 77%. The unique feature of this new separation technique is that no filtration and crystal washing is required after the <em>p</em>-DEB crystals are obtained by DF.</p></div>","PeriodicalId":17285,"journal":{"name":"Journal of The Chinese Institute of Chemical Engineers","volume":"39 1","pages":"Pages 59-65"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jcice.2007.11.008","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Chinese Institute of Chemical Engineers","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0368165307001256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Due to the close boiling points of the mixed diethylbenzene (DEB) isomers, it is rather complicated to separate them by distillation. A new separation technique, distillative freezing (DF), is successfully applied to separate p-DEB from the diethylbenzene isomers in this study. Basically, the DF process operates at a triple point condition, in which the liquid mixture is simultaneously vaporized and solidified due to the three-phase equilibrium. It results in the formation of pure crystals along with the liquid phase and vapor phase of the mixtures. The process can be continued until the liquid phase is completely eliminated and only the pure solid crystals remain in the feed. A model, whereby the DF process is simulated in a series of equilibrium stage operations, is proposed to direct the DF operation. In the model, each stage is operated under an adiabatic condition at a three-phase equilibrium. The experiments show that, in the p-DEB/m-DEB mixtures, p-DEB can be purified from 80% to 99% through several DF operations with the experimental recovery rate of p-DEB in one DF operation ranging from 58% to 77%. The unique feature of this new separation technique is that no filtration and crystal washing is required after the p-DEB crystals are obtained by DF.