Enhanced Ultrasound Classification of Microemboli Using Convolutional Neural Network

Abdelghani Tafsast, A. Khelalef, K. Ferroudji, M. Hadjili, A. Bouakaz, N. Benoudjit
{"title":"Enhanced Ultrasound Classification of Microemboli Using Convolutional Neural Network","authors":"Abdelghani Tafsast, A. Khelalef, K. Ferroudji, M. Hadjili, A. Bouakaz, N. Benoudjit","doi":"10.1142/s0219622022500742","DOIUrl":null,"url":null,"abstract":"Classification of microemboli is important in predicting clinical complications. In this study, we suggest a deep learning-based approach using convolutional neural network (CNN) and backscattered radio-frequency (RF) signals for classifying microemboli. The RF signals are converted into two-dimensional (2D) spectrograms which are exploited as inputs for the CNN. To confirm the usefulness of RF ultrasound signals in the classification of microemboli, two in vitro setups are developed. For the two setups, a contrast agent consisting of microbubbles is used to imitate the acoustic behavior of gaseous microemboli. In order to imitate the acoustic behavior of solid microemboli, the tissue mimicking material surrounding the tube is used for the first setup. However, for the second setup, a Doppler fluid containing particles with scattering characteristics comparable to the red blood cells is used. Results have shown that the suggested approach achieved better classification rates compared to the results obtained in previous studies.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"10 1","pages":"1169-1194"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622022500742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Classification of microemboli is important in predicting clinical complications. In this study, we suggest a deep learning-based approach using convolutional neural network (CNN) and backscattered radio-frequency (RF) signals for classifying microemboli. The RF signals are converted into two-dimensional (2D) spectrograms which are exploited as inputs for the CNN. To confirm the usefulness of RF ultrasound signals in the classification of microemboli, two in vitro setups are developed. For the two setups, a contrast agent consisting of microbubbles is used to imitate the acoustic behavior of gaseous microemboli. In order to imitate the acoustic behavior of solid microemboli, the tissue mimicking material surrounding the tube is used for the first setup. However, for the second setup, a Doppler fluid containing particles with scattering characteristics comparable to the red blood cells is used. Results have shown that the suggested approach achieved better classification rates compared to the results obtained in previous studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的微栓子超声增强分类
微栓子的分类是预测临床并发症的重要依据。在这项研究中,我们提出了一种基于深度学习的方法,使用卷积神经网络(CNN)和反向散射射频(RF)信号对微栓子进行分类。射频信号被转换成二维(2D)频谱图,作为CNN的输入。为了确认射频超声信号在微栓子分类中的有用性,开发了两个体外装置。在这两种设置中,使用由微泡组成的造影剂来模拟气态微栓子的声学行为。为了模拟固体微栓子的声学行为,在试管周围使用组织模拟材料进行第一次设置。然而,对于第二种设置,多普勒流体含有散射特性与红细胞相当的颗粒被使用。结果表明,与以往的研究结果相比,所提出的方法获得了更好的分类率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1