{"title":"Drawdown and Drawup of Bi-Directional Grid Constrained Stochastic Processes","authors":"A. Taranto, Shahjahan Khan","doi":"10.3844/JMSSP.2020.182.197","DOIUrl":null,"url":null,"abstract":"The Grid Trading Problem (GTP) of mathematical finance, used in portfolio loss minimization, generalized dynamic hedging and algorithmic trading, is researched by examining the impact of the drawdown and drawup of discrete random walks and of Ito diffusions on the Bi-Directional Grid Constrained (BGC) stochastic process for profit Pt and equity E_t over time. A comprehensive Discrete Difference Equation (DDE) and a continuous Stochastic Differential Equation (SDE) are derived and proved for the GTP. This allows fund managers and traders the ability to better stress test the impact of volatility to reduce risk and generate positive returns. These theorems are then simulated to complement the theoretical models with charts. Not only does this research extend a rich mathematical problem that can be further researched in its own right, but it also extends the applications into the above areas of finance.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"3 1","pages":"182-197"},"PeriodicalIF":0.3000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2020.182.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
The Grid Trading Problem (GTP) of mathematical finance, used in portfolio loss minimization, generalized dynamic hedging and algorithmic trading, is researched by examining the impact of the drawdown and drawup of discrete random walks and of Ito diffusions on the Bi-Directional Grid Constrained (BGC) stochastic process for profit Pt and equity E_t over time. A comprehensive Discrete Difference Equation (DDE) and a continuous Stochastic Differential Equation (SDE) are derived and proved for the GTP. This allows fund managers and traders the ability to better stress test the impact of volatility to reduce risk and generate positive returns. These theorems are then simulated to complement the theoretical models with charts. Not only does this research extend a rich mathematical problem that can be further researched in its own right, but it also extends the applications into the above areas of finance.