Exploring Cognitive States: Temporal Methods for Detecting and Characterizing Physiological Fingerprints

Nicholas J. Napoli, Stephen C. Adams, Angela R. Harrivel, C. Stephens, Kellie D. Kennedy, M. Paliwal, W. Scherer
{"title":"Exploring Cognitive States: Temporal Methods for Detecting and Characterizing Physiological Fingerprints","authors":"Nicholas J. Napoli, Stephen C. Adams, Angela R. Harrivel, C. Stephens, Kellie D. Kennedy, M. Paliwal, W. Scherer","doi":"10.2514/6.2020-1193","DOIUrl":null,"url":null,"abstract":", Cognitive state detection and its relationship to observable physiologically telemetry has been utilized for many human-machine and human-cybernetic applications. This paper aims at understanding and addressing if there are unique psychophysiological patterns over time, a ”physiological temporal fingerprint”, that is associated with specific cognitive states. This preliminary work involves commercial airline pilots completing experimental benchmark task inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW); and 3) Low Workload (LW). We approach this objective by modeling these \"fingerprints\" through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive states do have unique complexity of physiological sequences that are statistically different from other cognitive states. More specifically, CA has a significantly higher temporal psychophysiological complexity than HW and LW in EEG and ECG telemetry signals. With regards to respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and LW. Through our preliminary work, addressing this unique underpinning can inform whether these underlying dynamics can be utilized to understand how humans transition between cognitive states and for improved detection of cognitive states.","PeriodicalId":93413,"journal":{"name":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","volume":"98 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied aerodynamics : papers presented at the AIAA SciTech Forum and Exposition 2020 : Orlando, Florida, USA, 6-10 January 2020. AIAA SciTech Forum and Exposition (2020 : Orlando, Fla.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2020-1193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

, Cognitive state detection and its relationship to observable physiologically telemetry has been utilized for many human-machine and human-cybernetic applications. This paper aims at understanding and addressing if there are unique psychophysiological patterns over time, a ”physiological temporal fingerprint”, that is associated with specific cognitive states. This preliminary work involves commercial airline pilots completing experimental benchmark task inductions of three cognitive states: 1) Channelized Attention (CA); 2) High Workload (HW); and 3) Low Workload (LW). We approach this objective by modeling these "fingerprints" through the use of Hidden Markov Models and Entropy analysis to evaluate if the transitions over time are complex or rhythmic/predictable by nature. Our results indicate that cognitive states do have unique complexity of physiological sequences that are statistically different from other cognitive states. More specifically, CA has a significantly higher temporal psychophysiological complexity than HW and LW in EEG and ECG telemetry signals. With regards to respiration telemetry, CA has a lower temporal psychophysiological complexity than HW and LW. Through our preliminary work, addressing this unique underpinning can inform whether these underlying dynamics can be utilized to understand how humans transition between cognitive states and for improved detection of cognitive states.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索认知状态:生理指纹检测和表征的时间方法
认知状态检测及其与可观察生理遥测的关系已被用于许多人机和人机控制论应用。本文旨在理解和解决随着时间的推移是否存在独特的心理生理模式,即与特定认知状态相关的“生理时间指纹”。这项初步工作涉及商业航空公司飞行员完成三种认知状态的实验基准任务归纳:1)通道化注意(CA);2)高工作量(HW);3)低工作量(LW)。我们通过使用隐马尔可夫模型和熵分析来建模这些“指纹”,以评估随着时间的推移,这些转变是否复杂或有节奏/可预测。我们的研究结果表明,认知状态确实具有独特的生理序列复杂性,在统计上不同于其他认知状态。更具体地说,在脑电图和心电遥测信号中,CA的时间心理生理复杂性明显高于HW和LW。在呼吸遥测方面,CA比HW和LW具有更低的时间心理生理复杂性。通过我们的初步工作,解决这一独特的基础可以告知这些潜在的动态是否可以用来理解人类如何在认知状态之间转换,并改进认知状态的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
nCoV-BusterBot: Mission Simulation Lab Modules for Supporting a Lab-based Autonomous Systems Class in a Remote Learning Environment Experimental Force and Deformation Measurements of Bioinspired Flapping Wings in Ultra-Low Martian Density Environment. System Analyzer for a Bioinspired Mars Flight Vehicle System for Varying Mission Contexts. Burning Rate Characterization of Ammonium Perchlorate Pellets Containing Nano-Catalytic Additives The Effects of Turbulence-Kinetics Interactions on Reducing Chemical Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1