Modeling human location data with mixtures of kernel densities

Moshe Lichman, Padhraic Smyth
{"title":"Modeling human location data with mixtures of kernel densities","authors":"Moshe Lichman, Padhraic Smyth","doi":"10.1145/2623330.2623681","DOIUrl":null,"url":null,"abstract":"Location-based data is increasingly prevalent with the rapid increase and adoption of mobile devices. In this paper we address the problem of learning spatial density models, focusing specifically on individual-level data. Modeling and predicting a spatial distribution for an individual is a challenging problem given both (a) the typical sparsity of data at the individual level and (b) the heterogeneity of spatial mobility patterns across individuals. We investigate the application of kernel density estimation (KDE) to this problem using a mixture model approach that can interpolate between an individual's data and broader patterns in the population as a whole. The mixture-KDE approach is evaluated on two large geolocation/check-in data sets, from Twitter and Gowalla, with comparisons to non-KDE baselines, using both log-likelihood and detection of simulated identity theft as evaluation metrics. Our experimental results indicate that the mixture-KDE method provides a useful and accurate methodology for capturing and predicting individual-level spatial patterns in the presence of noisy and sparse data.","PeriodicalId":20536,"journal":{"name":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"133","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2623330.2623681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 133

Abstract

Location-based data is increasingly prevalent with the rapid increase and adoption of mobile devices. In this paper we address the problem of learning spatial density models, focusing specifically on individual-level data. Modeling and predicting a spatial distribution for an individual is a challenging problem given both (a) the typical sparsity of data at the individual level and (b) the heterogeneity of spatial mobility patterns across individuals. We investigate the application of kernel density estimation (KDE) to this problem using a mixture model approach that can interpolate between an individual's data and broader patterns in the population as a whole. The mixture-KDE approach is evaluated on two large geolocation/check-in data sets, from Twitter and Gowalla, with comparisons to non-KDE baselines, using both log-likelihood and detection of simulated identity theft as evaluation metrics. Our experimental results indicate that the mixture-KDE method provides a useful and accurate methodology for capturing and predicting individual-level spatial patterns in the presence of noisy and sparse data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用混合核密度建模人类位置数据
随着移动设备的快速增长和采用,基于位置的数据越来越普遍。在本文中,我们解决了学习空间密度模型的问题,特别关注个人层面的数据。考虑到(a)个体层面数据的典型稀疏性和(b)个体间空间流动模式的异质性,对个体的空间分布进行建模和预测是一个具有挑战性的问题。我们使用混合模型方法研究核密度估计(KDE)在这个问题上的应用,该方法可以在个体数据和总体中更广泛的模式之间进行插值。混合kde方法在来自Twitter和Gowalla的两个大型地理位置/登记数据集上进行评估,并与非kde基线进行比较,使用对数可能性和检测模拟身份盗窃作为评估指标。我们的实验结果表明,混合kde方法为捕获和预测存在噪声和稀疏数据的个人层面的空间模式提供了一种有用和准确的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
KDD '22: The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18, 2022 KDD '21: The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18, 2021 Mutually Beneficial Collaborations to Broaden Participation of Hispanics in Data Science Bringing Inclusive Diversity to Data Science: Opportunities and Challenges A Causal Look at Statistical Definitions of Discrimination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1