State-Space Modeling of a Rocket for Optimal Control System Design

Q4 Engineering 弹道学报 Pub Date : 2019-06-05 DOI:10.5772/intechopen.82292
Aliyu Bhar Kisabo, Aliyu Funmilayo Adebimpe
{"title":"State-Space Modeling of a Rocket for Optimal Control System Design","authors":"Aliyu Bhar Kisabo, Aliyu Funmilayo Adebimpe","doi":"10.5772/intechopen.82292","DOIUrl":null,"url":null,"abstract":"This chapter is the first of two others that will follow (a three-chapter series). Here we present the derivation of the mathematical model for a rocket ’ s autopilots in state space. The basic equations defining the airframe dynamics of a typical six degrees of freedom (6DoFs) are nonlinear and coupled . Separation of these nonlinear coupled dynamics is presented in this chapter to isolate the lateral dynamics from the longitudinal dynamics. Also, the need to determine aerodynamic coefficients and their derivative components is brought to light here. This is the crux of the equation. Methods of obtaining such coeffi- cients and their derivatives in a sequential form are also put forward. After the aerodynamic coefficients and their derivatives are obtained, the next step is to trim and linearize the decoupled nonlinear 6DoFs. In a novel way, we presented the linearization of the decoupled 6DoF equations in a generalized form. This should provide a lucid and easy way to implement trim and linearization in a computer program. The longitudinal model of a rocket presented in this chapter will serve as the main mathematical model in two other chapters that follow in this book.","PeriodicalId":35288,"journal":{"name":"弹道学报","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"弹道学报","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.5772/intechopen.82292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

This chapter is the first of two others that will follow (a three-chapter series). Here we present the derivation of the mathematical model for a rocket ’ s autopilots in state space. The basic equations defining the airframe dynamics of a typical six degrees of freedom (6DoFs) are nonlinear and coupled . Separation of these nonlinear coupled dynamics is presented in this chapter to isolate the lateral dynamics from the longitudinal dynamics. Also, the need to determine aerodynamic coefficients and their derivative components is brought to light here. This is the crux of the equation. Methods of obtaining such coeffi- cients and their derivatives in a sequential form are also put forward. After the aerodynamic coefficients and their derivatives are obtained, the next step is to trim and linearize the decoupled nonlinear 6DoFs. In a novel way, we presented the linearization of the decoupled 6DoF equations in a generalized form. This should provide a lucid and easy way to implement trim and linearization in a computer program. The longitudinal model of a rocket presented in this chapter will serve as the main mathematical model in two other chapters that follow in this book.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于最优控制系统设计的火箭状态空间建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
弹道学报
弹道学报 Engineering-Mechanical Engineering
CiteScore
0.90
自引率
0.00%
发文量
2632
期刊介绍:
期刊最新文献
Facility Performance Evaluation at Fish Landing Port (PPI) Binuangeun Banten, Indonesia: What strategies can be applied? Investigating the use of Deep Learning, in Materials Research for Predicting Material Properties, Identifying new Materials, and Optimizing Material Selection for Mechanical Components Investigating the Creation of AI-Driven Solutions for Risk Assessment, Continuous Improvement, and Supplier Performance Monitoring Mapping the Evolving Landscape of Cloud Computing Research: A Bibliometric Analysis Predictive Maintenance in IoT Devices using Time Series Analysis and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1