High Performance Implementation of an Econometrics and Financial Application on GPUs

M. Creel, M. Zubair
{"title":"High Performance Implementation of an Econometrics and Financial Application on GPUs","authors":"M. Creel, M. Zubair","doi":"10.1109/SC.Companion.2012.138","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a GPU based implementation for an estimator based on an indirect likelihood inference method. This method relies on simulations from a model and on nonparametric density or regression function computations. The estimation application arises in various domains such as econometrics and finance, when the model is fully specified, but too complex for estimation by maximum likelihood. We implemented the estimator on a machine with two 2.67GHz Intel Xeon X5650 processors and four NVIDIA M2090 GPU devices. We optimized the GPU code by efficient use of shared memory and registers available on the GPU devices. We compared the optimized GPU code performance with a C based sequential version of the code that was executed on the host machine. We observed a speed up factor of up to 242 with four GPU devices.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"os-27 1","pages":"1147-1153"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we describe a GPU based implementation for an estimator based on an indirect likelihood inference method. This method relies on simulations from a model and on nonparametric density or regression function computations. The estimation application arises in various domains such as econometrics and finance, when the model is fully specified, but too complex for estimation by maximum likelihood. We implemented the estimator on a machine with two 2.67GHz Intel Xeon X5650 processors and four NVIDIA M2090 GPU devices. We optimized the GPU code by efficient use of shared memory and registers available on the GPU devices. We compared the optimized GPU code performance with a C based sequential version of the code that was executed on the host machine. We observed a speed up factor of up to 242 with four GPU devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于gpu的计量经济学和金融应用的高性能实现
在本文中,我们描述了一个基于GPU的基于间接似然推理方法的估计器的实现。这种方法依赖于模型的模拟和非参数密度或回归函数的计算。当模型是完全指定的,但是对于最大似然估计来说过于复杂时,估计应用程序出现在诸如计量经济学和金融等各个领域。我们在一台带有两个2.67GHz Intel Xeon X5650处理器和四个NVIDIA M2090 GPU设备的机器上实现了这个估计器。我们通过有效地利用GPU设备上可用的共享内存和寄存器来优化GPU代码。我们将优化后的GPU代码性能与在主机上执行的基于C的顺序版本的代码进行了比较。我们观察到四个GPU设备的加速系数高达242。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1