Genetic algorithm with random and memory immigrant strategies for solving dynamic load balanced clustering problem in wireless sensor networks

Mohaideen Pitchai
{"title":"Genetic algorithm with random and memory immigrant strategies for solving dynamic load balanced clustering problem in wireless sensor networks","authors":"Mohaideen Pitchai","doi":"10.34028/iajit/20/4/3","DOIUrl":null,"url":null,"abstract":"In Wireless Sensor Networks (WSNs), clustering is an effective method to distribute the load equally among all the nodes as compared to flat network architecture. Due to the dynamic nature of the network, the clustering process can be viewed as a dynamic optimization problem and the conventional computational intelligence techniques are not enough to solve these problems. The Dynamic Genetic Algorithm (DGA) addresses these problems with the help of searching optimal solutions in new environments. Therefore the dynamic load-balanced clustering process is modeled using the basic components of standard genetic algorithm and then the model is enhanced is using immigrants and memory-based schemes to elect suitable cluster heads. The metrics nodes’ residual energy level, node centrality, and mobility speed of the nodes are considered to elect the load-balanced cluster heads and the optimal number of cluster members are assigned to each cluster head using the proposed DGA schemes such as Random Immigrants Genetic Approach (RIGA), Memory Immigrants Genetic Approach (MIGA), and Memory and Random Immigrants Genetic Approach (MRIGA). The simulation results show that the proposed DGA scheme MRIGA outperforms well as compared with RIGA and MIGA in terms of various performance metrics such as the number of nodes alive, residual energy level, packet delivery ratio, end-to-end delay, and overhead for the formation of clusters.","PeriodicalId":13624,"journal":{"name":"Int. Arab J. Inf. Technol.","volume":"11 19 1","pages":"575-583"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. Arab J. Inf. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/4/3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Wireless Sensor Networks (WSNs), clustering is an effective method to distribute the load equally among all the nodes as compared to flat network architecture. Due to the dynamic nature of the network, the clustering process can be viewed as a dynamic optimization problem and the conventional computational intelligence techniques are not enough to solve these problems. The Dynamic Genetic Algorithm (DGA) addresses these problems with the help of searching optimal solutions in new environments. Therefore the dynamic load-balanced clustering process is modeled using the basic components of standard genetic algorithm and then the model is enhanced is using immigrants and memory-based schemes to elect suitable cluster heads. The metrics nodes’ residual energy level, node centrality, and mobility speed of the nodes are considered to elect the load-balanced cluster heads and the optimal number of cluster members are assigned to each cluster head using the proposed DGA schemes such as Random Immigrants Genetic Approach (RIGA), Memory Immigrants Genetic Approach (MIGA), and Memory and Random Immigrants Genetic Approach (MRIGA). The simulation results show that the proposed DGA scheme MRIGA outperforms well as compared with RIGA and MIGA in terms of various performance metrics such as the number of nodes alive, residual energy level, packet delivery ratio, end-to-end delay, and overhead for the formation of clusters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机和记忆迁移策略的遗传算法求解无线传感器网络中的动态负载均衡聚类问题
在无线传感器网络(WSNs)中,与平面网络结构相比,聚类是一种有效的将负载平均分配给所有节点的方法。由于网络的动态性,聚类过程可以看作是一个动态优化问题,传统的计算智能技术不足以解决这些问题。动态遗传算法(DGA)通过在新环境中寻找最优解来解决这些问题。因此,采用标准遗传算法的基本组件对动态负载均衡聚类过程进行建模,然后采用基于迁移和基于内存的方案对模型进行增强,以选择合适的簇头。采用随机移民遗传方法(RIGA)、内存移民遗传方法(MIGA)和内存和随机移民遗传方法(MRIGA),根据节点的剩余能量水平、节点的中心性和节点的移动速度来选择负载均衡的簇头,并为每个簇头分配最优的簇成员数量。仿真结果表明,与RIGA和MIGA方案相比,MRIGA方案在存活节点数、剩余能量水平、分组投递率、端到端延迟和集群形成开销等性能指标上都有较好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Energy Efficient Harvesting Technique for SDWSN using RF Transmitters with MISO Beamforming Incorporating triple attention and multi-scale pyramid network for underwater image enhancement Generative adversarial networks with data augmentation and multiple penalty areas for image synthesis MAPNEWS: a framework for aggregating and organizing online news articles Deep learning based mobilenet and multi-head attention model for facial expression recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1