{"title":"Inflatable Packer Anchor System Enables Rigless Installation of an Insertable Progressing Cavity Pump in South Oman","authors":"Alejandro Osorio, F. Ford, B. Montilla","doi":"10.2118/192043-ms","DOIUrl":null,"url":null,"abstract":"\n Current market conditions in the oil industry call for cost effective well intervention methods to optimize production in wells completed with Insertable Progressing Cavity Pumps (I-PCPs). Rigless rod-string conveyance of I-PCP's traditionally rely on Pump Seating Nipples (PSNs) or mechanical-set I-PCP anchoring devices in wells without PSN's. Although the installation of an I-PCP on a PSN is a reliable method, it requires a PSN to be originally installed within the production tubing, which limits the I-PCP setting depth to the location of the PSN. Rod-string conveyance of mechanical-set I- PCP anchoring devices is limited by the rod string's effectiveness to transmit the required axial loads to setting depth, which becomes increasingly challenging in extended-reach conditions. Other challenges with I-PCP installations include location of previously installed PSN's and positive anchoring to facilitate disengagement of the rotor without unseating the I-PCP for flush-by operations.\n An inflatable packer anchoring device has been developed to simplify rigless installation of an I-PCP without the need of a seating nipple. The device relies only on hydraulic pressure while eliminating the need for axial loads during its setting sequence. The rod string deployed inflatable packer I-PCP anchoring device incorporates inflatable packer technology in conjunction with a hydraulically-actuated slip mechanism. It is equipped with seal cups and a shearable intake sub to obtain the required pressure competence to confirm tubing integrity and enable its setting sequence while maximizing flow-through capability after it is set. The system can be retrieved by applying overpull to shear its release pins allowing the inflatable packers to deflate and the mechanical slips to retract.\n The first installation of this system proved its optimal functionality by successfully setting an I-PCP in 3-1/2\" production tubing in a vertical well in Oman's Sadad field. The I-PCP was deployed on rod string in conjunction with the inflatable packer anchoring device to setting depth. The system was set by applying pressure with a flush-by unit pump via the tubing-rod annulus, and the well was immediately placed into production.\n The objective of this paper is to provide a technical explanation of this innovative and unique technology, share the lessons learned from its first installation, and discuss its potential to improve the current capabilities of I-PCP technology while reducing operational cost and optimizing PCP/I-PCP completion design.","PeriodicalId":11182,"journal":{"name":"Day 3 Thu, October 25, 2018","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, October 25, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/192043-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Current market conditions in the oil industry call for cost effective well intervention methods to optimize production in wells completed with Insertable Progressing Cavity Pumps (I-PCPs). Rigless rod-string conveyance of I-PCP's traditionally rely on Pump Seating Nipples (PSNs) or mechanical-set I-PCP anchoring devices in wells without PSN's. Although the installation of an I-PCP on a PSN is a reliable method, it requires a PSN to be originally installed within the production tubing, which limits the I-PCP setting depth to the location of the PSN. Rod-string conveyance of mechanical-set I- PCP anchoring devices is limited by the rod string's effectiveness to transmit the required axial loads to setting depth, which becomes increasingly challenging in extended-reach conditions. Other challenges with I-PCP installations include location of previously installed PSN's and positive anchoring to facilitate disengagement of the rotor without unseating the I-PCP for flush-by operations.
An inflatable packer anchoring device has been developed to simplify rigless installation of an I-PCP without the need of a seating nipple. The device relies only on hydraulic pressure while eliminating the need for axial loads during its setting sequence. The rod string deployed inflatable packer I-PCP anchoring device incorporates inflatable packer technology in conjunction with a hydraulically-actuated slip mechanism. It is equipped with seal cups and a shearable intake sub to obtain the required pressure competence to confirm tubing integrity and enable its setting sequence while maximizing flow-through capability after it is set. The system can be retrieved by applying overpull to shear its release pins allowing the inflatable packers to deflate and the mechanical slips to retract.
The first installation of this system proved its optimal functionality by successfully setting an I-PCP in 3-1/2" production tubing in a vertical well in Oman's Sadad field. The I-PCP was deployed on rod string in conjunction with the inflatable packer anchoring device to setting depth. The system was set by applying pressure with a flush-by unit pump via the tubing-rod annulus, and the well was immediately placed into production.
The objective of this paper is to provide a technical explanation of this innovative and unique technology, share the lessons learned from its first installation, and discuss its potential to improve the current capabilities of I-PCP technology while reducing operational cost and optimizing PCP/I-PCP completion design.