Poster: GPU Accelerated Ultrasonic Tomography Using Propagation and Backpropagation Method

P. Bello, Yuanwei Jin, E. Lu
{"title":"Poster: GPU Accelerated Ultrasonic Tomography Using Propagation and Backpropagation Method","authors":"P. Bello, Yuanwei Jin, E. Lu","doi":"10.1109/SC.Companion.2012.249","DOIUrl":null,"url":null,"abstract":"This paper develops implementation strategy and method to accelerate the propagation and backpropagation (PBP) tomographic imaging algorithm using Graphic Processing Units (GPUs). The Compute Unified Device Architecture (CUDA) programming model is used to develop our parallelized algorithm since the CUDA model allows the user to interact with the GPU resources more efficiently than traditional shader methods. The results show an improvement of more than 80x when compared to the C/C++ version of the algorithm, and 515x when compared to the MATLAB version while achieving high quality imaging for both cases. We test different CUDA kernel configurations in order to measure changes in the processing-time of our algorithm. By examining the acceleration rate and the image quality, we develop an optimal kernel configuration that maximizes the throughput of CUDA implementation for the PBP method.","PeriodicalId":6346,"journal":{"name":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","volume":"os-44 1","pages":"1447"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 SC Companion: High Performance Computing, Networking Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.Companion.2012.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper develops implementation strategy and method to accelerate the propagation and backpropagation (PBP) tomographic imaging algorithm using Graphic Processing Units (GPUs). The Compute Unified Device Architecture (CUDA) programming model is used to develop our parallelized algorithm since the CUDA model allows the user to interact with the GPU resources more efficiently than traditional shader methods. The results show an improvement of more than 80x when compared to the C/C++ version of the algorithm, and 515x when compared to the MATLAB version while achieving high quality imaging for both cases. We test different CUDA kernel configurations in order to measure changes in the processing-time of our algorithm. By examining the acceleration rate and the image quality, we develop an optimal kernel configuration that maximizes the throughput of CUDA implementation for the PBP method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
海报:使用传播和反向传播方法的GPU加速超声断层扫描
本文提出了利用图形处理单元(gpu)加速传播和反向传播(PBP)层析成像算法的实现策略和方法。计算统一设备架构(CUDA)编程模型用于开发我们的并行算法,因为CUDA模型允许用户比传统的着色器方法更有效地与GPU资源交互。结果表明,与C/ c++版本的算法相比,该算法提高了80倍以上,与MATLAB版本相比提高了515倍,同时实现了两种情况下的高质量成像。为了测量算法处理时间的变化,我们测试了不同的CUDA内核配置。通过检查加速速率和图像质量,我们开发了一个优化的内核配置,最大限度地提高了PBP方法CUDA实现的吞吐量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High Performance Computing and Networking: Select Proceedings of CHSN 2021 High Quality Real-Time Image-to-Mesh Conversion for Finite Element Simulations Abstract: Automatically Adapting Programs for Mixed-Precision Floating-Point Computation Poster: Memory-Conscious Collective I/O for Extreme-Scale HPC Systems Abstract: Virtual Machine Packing Algorithms for Lower Power Consumption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1