Design of a programmable micro-ultrasound research platform

Harry C. T. Chiu, Lequan Zhang, D. Cheung, Chang-Hong Hu, K. Shung, A. Yu
{"title":"Design of a programmable micro-ultrasound research platform","authors":"Harry C. T. Chiu, Lequan Zhang, D. Cheung, Chang-Hong Hu, K. Shung, A. Yu","doi":"10.1109/ULTSYM.2010.5935688","DOIUrl":null,"url":null,"abstract":"To foster innovative uses of micro-ultrasound in biomedicine, it is beneficial to develop flexible research-purpose systems that allow researchers to easily reconfigure its system-level operations such as transmit firing sequence and receive processing. In this paper, we present the development of a programmable micro-ultrasound research platform that is capable of realizing various micro-imaging algorithms. The research platform comprises a linear-array-based scanning front-end and a PC-based data processing back-end, which employs a graphical processing unit (GPU) as the processor core. The front-end operations can be configured from the PC via the parallel port and the two blocks are synchronized by an external clock. Acquired data from the front-end is first digitized and relayed to the PC through an data acquisition card (200 MHz, 14-bit). They are then transferred to the GPU (GTX 275) in which the image formation is carried out via multi-thread processing. Results are displayed on-screen in real-time and can be saved to the PC's hard disk for offline analysis. Through a module-based programming approach, this platform can facilitate realization of custom-designed imaging algorithms developed by researchers. In this work, B-mode imaging and adaptive color flow imaging have been implemented as demonstrations of the research platform's programmability. The performance results show that real-time processing frame rates can be achieved for both imaging modes.","PeriodicalId":6437,"journal":{"name":"2010 IEEE International Ultrasonics Symposium","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2010.5935688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To foster innovative uses of micro-ultrasound in biomedicine, it is beneficial to develop flexible research-purpose systems that allow researchers to easily reconfigure its system-level operations such as transmit firing sequence and receive processing. In this paper, we present the development of a programmable micro-ultrasound research platform that is capable of realizing various micro-imaging algorithms. The research platform comprises a linear-array-based scanning front-end and a PC-based data processing back-end, which employs a graphical processing unit (GPU) as the processor core. The front-end operations can be configured from the PC via the parallel port and the two blocks are synchronized by an external clock. Acquired data from the front-end is first digitized and relayed to the PC through an data acquisition card (200 MHz, 14-bit). They are then transferred to the GPU (GTX 275) in which the image formation is carried out via multi-thread processing. Results are displayed on-screen in real-time and can be saved to the PC's hard disk for offline analysis. Through a module-based programming approach, this platform can facilitate realization of custom-designed imaging algorithms developed by researchers. In this work, B-mode imaging and adaptive color flow imaging have been implemented as demonstrations of the research platform's programmability. The performance results show that real-time processing frame rates can be achieved for both imaging modes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可编程微超声研究平台的设计
为了促进微超声在生物医学中的创新应用,开发灵活的研究目的系统是有益的,使研究人员能够轻松地重新配置其系统级操作,如发射序列和接收处理。在本文中,我们提出了一个可编程的微超声研究平台的开发,能够实现各种微成像算法。该研究平台由基于线性阵列的扫描前端和基于pc机的数据处理后端组成,并采用图形处理器(GPU)作为处理器核心。前端操作可以通过并行端口从PC配置,两个块由外部时钟同步。从前端采集的数据首先数字化,并通过数据采集卡(200mhz, 14位)中继到PC。然后将它们传输到GPU (GTX 275),其中图像形成通过多线程处理进行。结果显示在屏幕上实时,并可以保存到PC的硬盘离线分析。通过基于模块的编程方法,该平台可以方便地实现研究人员开发的定制设计的成像算法。在这项工作中,实现了b模式成像和自适应彩色流成像,以证明研究平台的可编程性。性能结果表明,两种成像模式均可实现实时处理帧率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combined use of iteration, quadratic interpolation and an extra kernel for high-resolution 2D particle tracking: A first evaluation Comparing tumor response to VEGF blockade therapy using high frequency ultrasound imaging with size-selected microbubble contrast agents A comparative study of optimal fundamental, second- and superharmonic imaging Evaluation for the distribution of fouling deposition on the microfiltration membrane using high frequency ultrasound A matrix phased array system for 3D high frame-rate imaging of the carotid arteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1