A minimal model for vertical shear instability in protoplanetary accretion disks

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2021-06-08 DOI:10.1080/03091929.2021.1941921
R. Yellin-Bergovoy, O. Umurhan, E. Heifetz
{"title":"A minimal model for vertical shear instability in protoplanetary accretion disks","authors":"R. Yellin-Bergovoy, O. Umurhan, E. Heifetz","doi":"10.1080/03091929.2021.1941921","DOIUrl":null,"url":null,"abstract":"The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability's essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels' slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid's radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"26 1","pages":"674 - 695"},"PeriodicalIF":1.1000,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2021.1941921","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

The vertical shear instability is an axisymmetric effect suggested to drive turbulence in the magnetically inactive zones of protoplanetary accretion disks. Here we examine its physical mechanism in analytically tractable “minimal models” in three settings that include a uniform density fluid, a stratified atmosphere, and a shearing-box section of a protoplanetary disk. Each of these analyses show that the vertical shear instability's essence is similar to the slantwise convective symmetric instability in the mid-latitude Earth atmosphere, in the presence of vertical shear of the baroclinic jet stream, as well as mixing in the top layers of the Gulf Stream. We show that in order to obtain instability, the fluid parcels' slope should exceed the slope of the mean absolute momentum in the disk radial-vertical plane. We provide a detailed and mutually self-consistent physical explanation from three perspectives: in terms of angular momentum conservation, as a dynamical interplay between a fluid's radial and azimuthal vorticity components, and from an energy perspective involving a generalised Solberg-Høiland Rayleigh condition. Furthermore, we explain why anelastic dynamics yields oscillatory unstable modes and isolate the oscillation mechanism from the instability one.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原行星吸积盘中垂直剪切不稳定的最小模型
垂直剪切不稳定性是一种轴对称效应,被认为是驱动原行星吸积盘磁不活跃区湍流的原因。在这里,我们在三种环境中,包括均匀密度流体、分层大气和原行星盘的剪切盒部分,用易于分析的“最小模型”来研究它的物理机制。这些分析都表明,垂直切变不稳定的本质与地球中纬度大气中斜压急流垂直切变和墨西哥湾流顶层混合的斜向对流对称不稳定相似。我们表明,为了获得不稳定性,流体包的斜率应该超过平均绝对动量在圆盘径向垂直面上的斜率。我们从三个角度提供了一个详细的、相互自洽的物理解释:从角动量守恒的角度,作为流体径向和方位涡量分量之间的动态相互作用,以及从涉及广义Solberg-Høiland Rayleigh条件的能量角度。此外,我们解释了为什么非弹性动力学产生振荡不稳定模式,并将振荡机制与不稳定机制分离开来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1