ZiYang Li, Kai Huang, Gang Zhu, Xinlang Zuo, C. Chen
{"title":"Microstructural evolution of Ag-0.20wt-%Mg-0.19wt-%Ni alloy in under-oxidized condition","authors":"ZiYang Li, Kai Huang, Gang Zhu, Xinlang Zuo, C. Chen","doi":"10.1080/02670836.2023.2231726","DOIUrl":null,"url":null,"abstract":"The under-oxidized condition (insufficient internal oxidation) for Ag-0.20Mg-0.19Ni (in wt-%) alloy was conducted at 650°C for 2 h, and the microstructural evolution in the alloy was investigated. The average grain size of the oxidized region and the unoxidized region are 3.82 µm and 3.86 m, respectively. The results suggest that the oxides enriched at grain boundaries do not hinder grain growth in the under-oxidized condition. The hardness of the oxidized region increases significantly, while the hardness of the unoxidized region decreases due to recrystallization. Both the number and the distribution area of MgO precipitates at the grain boundaries are increased with the internal oxidation time. Additionally, small MgO precipitates merge to form larger oxide particles with the internal oxidation time.","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2231726","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The under-oxidized condition (insufficient internal oxidation) for Ag-0.20Mg-0.19Ni (in wt-%) alloy was conducted at 650°C for 2 h, and the microstructural evolution in the alloy was investigated. The average grain size of the oxidized region and the unoxidized region are 3.82 µm and 3.86 m, respectively. The results suggest that the oxides enriched at grain boundaries do not hinder grain growth in the under-oxidized condition. The hardness of the oxidized region increases significantly, while the hardness of the unoxidized region decreases due to recrystallization. Both the number and the distribution area of MgO precipitates at the grain boundaries are increased with the internal oxidation time. Additionally, small MgO precipitates merge to form larger oxide particles with the internal oxidation time.
期刊介绍:
《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.