A Ceph-based storage strategy for big gridded remote sensing data

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-12-27 DOI:10.1080/20964471.2021.1989792
Xinyu Tang, X. Yao, Diyou Liu, Long Zhao, Li Li, Dehai Zhu, Guoqing Li
{"title":"A Ceph-based storage strategy for big gridded remote sensing data","authors":"Xinyu Tang, X. Yao, Diyou Liu, Long Zhao, Li Li, Dehai Zhu, Guoqing Li","doi":"10.1080/20964471.2021.1989792","DOIUrl":null,"url":null,"abstract":"ABSTRACT When using distributed storage systems to store gridded remote sensing data in large, distributed clusters, most solutions utilize big table index storage strategies. However, in practice, the performance of big table index storage strategies degrades as scenarios become more complex, and the reasons for this phenomenon are analyzed in this paper. To improve the read and write performance of distributed gridded data storage, this paper proposes a storage strategy based on Ceph software. The strategy encapsulates remote sensing images in the form of objects through a metadata management strategy to achieve the spatiotemporal retrieval of gridded data, finding the cluster location of gridded data through hash-like calculations. The method can effectively achieve spatial operation support in the clustered database and at the same time enable fast random read and write of the gridded data. Random write and spatial query experiments proved the feasibility, effectiveness, and stability of this strategy. The experiments prove that the method has higher stability than, and that the average query time is 38% lower than that for, the large table index storage strategy, which greatly improves the storage and query efficiency of gridded images.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"16 1","pages":"323 - 339"},"PeriodicalIF":4.2000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1989792","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT When using distributed storage systems to store gridded remote sensing data in large, distributed clusters, most solutions utilize big table index storage strategies. However, in practice, the performance of big table index storage strategies degrades as scenarios become more complex, and the reasons for this phenomenon are analyzed in this paper. To improve the read and write performance of distributed gridded data storage, this paper proposes a storage strategy based on Ceph software. The strategy encapsulates remote sensing images in the form of objects through a metadata management strategy to achieve the spatiotemporal retrieval of gridded data, finding the cluster location of gridded data through hash-like calculations. The method can effectively achieve spatial operation support in the clustered database and at the same time enable fast random read and write of the gridded data. Random write and spatial query experiments proved the feasibility, effectiveness, and stability of this strategy. The experiments prove that the method has higher stability than, and that the average query time is 38% lower than that for, the large table index storage strategy, which greatly improves the storage and query efficiency of gridded images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ceph的大网格遥感数据存储策略
当使用分布式存储系统在大型分布式集群中存储网格遥感数据时,大多数解决方案使用大表索引存储策略。然而,在实际应用中,大表索引存储策略的性能会随着场景的复杂化而下降,本文对这种现象的原因进行了分析。为了提高分布式网格数据存储的读写性能,本文提出了一种基于Ceph软件的存储策略。该策略通过元数据管理策略将遥感图像封装为对象形式,实现网格数据的时空检索,通过类哈希计算找到网格数据的聚类位置。该方法可以有效地实现集群数据库的空间操作支持,同时实现网格数据的快速随机读写。随机写入和空间查询实验证明了该策略的可行性、有效性和稳定性。实验证明,该方法比大表索引存储策略具有更高的稳定性,平均查询时间比大表索引存储策略低38%,极大地提高了网格图像的存储和查询效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1