Copper Surface Roughness Analysis in Mathematical Morphology Algorithm for the Insertion-Loss Validation

Li-Chi Chang, Yu-Sen Yang, Yu-Tian Lee, Shao-Wei Hsu, Chieh-Sen Lee, Ming-Chuan Chang
{"title":"Copper Surface Roughness Analysis in Mathematical Morphology Algorithm for the Insertion-Loss Validation","authors":"Li-Chi Chang, Yu-Sen Yang, Yu-Tian Lee, Shao-Wei Hsu, Chieh-Sen Lee, Ming-Chuan Chang","doi":"10.1109/IMPACT56280.2022.9966669","DOIUrl":null,"url":null,"abstract":"Insertion loss of a testing vehicle is widely referred for the material estimation, the differential pair and single-end striplines are generally employed for the high-speed digital applications. In addition to the matte side, the shiny side with the surface treatment of the inner layer is the critical issue for the insertion-loss improvement. In general, the inner-layer roughness is determined by the cross-section scanning electron or optical microscope photo with the manual defining of the average line. Therefore, the tolerance is produced from personal operation or gage repeatability and reproducibility (Gage R and R). In this study, a mathematical morphology algorithm is proposed for automatically detecting the roughness of the striplines. Basing on the algorithm and operating flow, the detected Rz and Rq values of the copper-foil roughness are applied in 3D simulation tool for the insertion-loss validation and comparison.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"7 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Insertion loss of a testing vehicle is widely referred for the material estimation, the differential pair and single-end striplines are generally employed for the high-speed digital applications. In addition to the matte side, the shiny side with the surface treatment of the inner layer is the critical issue for the insertion-loss improvement. In general, the inner-layer roughness is determined by the cross-section scanning electron or optical microscope photo with the manual defining of the average line. Therefore, the tolerance is produced from personal operation or gage repeatability and reproducibility (Gage R and R). In this study, a mathematical morphology algorithm is proposed for automatically detecting the roughness of the striplines. Basing on the algorithm and operating flow, the detected Rz and Rq values of the copper-foil roughness are applied in 3D simulation tool for the insertion-loss validation and comparison.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜表面粗糙度分析的数学形态学算法插入损耗验证
测试车辆的插入损耗被广泛用于材料估计,差分对和单端带状线通常用于高速数字应用。除哑光面外,对有光泽面进行内层表面处理是改善插入损耗的关键问题。一般来说,内层粗糙度是通过扫描电子或光学显微镜照片的横截面来确定的,并手动确定平均线。因此,公差是由个人操作或量具的重复性和再现性(量具R和R)产生的。在本研究中,提出了一种数学形态学算法来自动检测带状线的粗糙度。根据算法和操作流程,将检测到的铜箔粗糙度Rz和Rq值应用到三维仿真工具中进行插损验证和比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematising clustering techniques through cross-disciplinary research, leading to the development of new methods Overview of the research work of Dr. Hui-Ping Chuang Scaling up innovation: European Innovation Council Research on optical computing system architecture for simple recurrent neural networks Next-generation healthcare infrastructure based on cross-layer optimization of biosignal sensing and communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1