Divesh Aggarwal, D. Dadush, O. Regev, Noah Stephens-Davidowitz
{"title":"Solving the Shortest Vector Problem in 2n Time Using Discrete Gaussian Sampling: Extended Abstract","authors":"Divesh Aggarwal, D. Dadush, O. Regev, Noah Stephens-Davidowitz","doi":"10.1145/2746539.2746606","DOIUrl":null,"url":null,"abstract":"We give a randomized 2n+o(n)-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic ~O(4n)-time and ~O(2n)-space algorithm of Micciancio and Voulgaris (STOC 2010, SIAM J. Comp. 2013). In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more interesting) problem of discrete Gaussian sampling (DGS). More specifically, we show how to sample 2n/2 vectors from the discrete Gaussian distribution at any parameter in 2n+o(n) time and space. (Prior work only solved DGS for very large parameters.) Our SVP result then follows from a natural reduction from SVP to DGS. In addition, we give a more refined algorithm for DGS above the so-called smoothing parameter of the lattice, which can generate 2n/2 discrete Gaussian samples in just 2n/2+o(n) time and space. Among other things, this implies a 2n/2+o(n)-time and space algorithm for 1.93-approximate decision SVP.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"62 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93
Abstract
We give a randomized 2n+o(n)-time and space algorithm for solving the Shortest Vector Problem (SVP) on n-dimensional Euclidean lattices. This improves on the previous fastest algorithm: the deterministic ~O(4n)-time and ~O(2n)-space algorithm of Micciancio and Voulgaris (STOC 2010, SIAM J. Comp. 2013). In fact, we give a conceptually simple algorithm that solves the (in our opinion, even more interesting) problem of discrete Gaussian sampling (DGS). More specifically, we show how to sample 2n/2 vectors from the discrete Gaussian distribution at any parameter in 2n+o(n) time and space. (Prior work only solved DGS for very large parameters.) Our SVP result then follows from a natural reduction from SVP to DGS. In addition, we give a more refined algorithm for DGS above the so-called smoothing parameter of the lattice, which can generate 2n/2 discrete Gaussian samples in just 2n/2+o(n) time and space. Among other things, this implies a 2n/2+o(n)-time and space algorithm for 1.93-approximate decision SVP.