{"title":"Design and locomotion analysis of a close-chain leg-wheel mobile platform","authors":"Xiang-Ming Fan, Q. Ruan","doi":"10.1108/ir-02-2022-0046","DOIUrl":null,"url":null,"abstract":"\nPurpose\nTo take the advantages of terrain-adaptive capability of legged platform and fast-moving ability of wheeled platform, this paper aims to design a leg-wheel mobile platform for obstacle surmounting and analyze the feasibility and locomotivity of different moving modes.\n\n\nDesign/methodology/approach\nThe platform consists of six leg-wheel units. Each of the units has a close-chain mechanical leg and an actuated wheel at the end of the leg. The platform moves with two modes: legged mode and leg-wheel composite mode. The legged mode achieves high mobility driven by crank motors, while the leg-wheel composite mode achieves obstacle-surmounting ability actuated by crank motors and pitch link motors and obtains high efficiency with the hub motors. The gait planning in different modes has been carried out and the obstacle-surmounting capacity has been analyzed.\n\n\nFindings\nBased on the results of kinematic analysis and gait planning of the close-chain leg-wheel platform, the high mobility and efficiency obstacle-surmounting ability are demonstrated with the two movement modes. The feasibility of the design and the performance of the mobile platform is verified with the prototype experiment. The results of this paper show that the platform possesses good obstacle-surmounting capability.\n\n\nOriginality/value\nThe work presented in this paper is a novel exploration to design a close-chain leg mechanism and with an actuated wheel in series. The close-chain leg mechanism has the advantages of high leg lift and single degree of freedom characteristics, which makes the platform obtain the ability of obstacle-surmounting.\n","PeriodicalId":54987,"journal":{"name":"Industrial Robot-The International Journal of Robotics Research and Application","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2022-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Robot-The International Journal of Robotics Research and Application","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/ir-02-2022-0046","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 1
Abstract
Purpose
To take the advantages of terrain-adaptive capability of legged platform and fast-moving ability of wheeled platform, this paper aims to design a leg-wheel mobile platform for obstacle surmounting and analyze the feasibility and locomotivity of different moving modes.
Design/methodology/approach
The platform consists of six leg-wheel units. Each of the units has a close-chain mechanical leg and an actuated wheel at the end of the leg. The platform moves with two modes: legged mode and leg-wheel composite mode. The legged mode achieves high mobility driven by crank motors, while the leg-wheel composite mode achieves obstacle-surmounting ability actuated by crank motors and pitch link motors and obtains high efficiency with the hub motors. The gait planning in different modes has been carried out and the obstacle-surmounting capacity has been analyzed.
Findings
Based on the results of kinematic analysis and gait planning of the close-chain leg-wheel platform, the high mobility and efficiency obstacle-surmounting ability are demonstrated with the two movement modes. The feasibility of the design and the performance of the mobile platform is verified with the prototype experiment. The results of this paper show that the platform possesses good obstacle-surmounting capability.
Originality/value
The work presented in this paper is a novel exploration to design a close-chain leg mechanism and with an actuated wheel in series. The close-chain leg mechanism has the advantages of high leg lift and single degree of freedom characteristics, which makes the platform obtain the ability of obstacle-surmounting.
期刊介绍:
Industrial Robot publishes peer reviewed research articles, technology reviews and specially commissioned case studies. Each issue includes high quality content covering all aspects of robotic technology, and reflecting the most interesting and strategically important research and development activities from around the world.
The journal’s policy of not publishing work that has only been tested in simulation means that only the very best and most practical research articles are included. This ensures that the material that is published has real relevance and value for commercial manufacturing and research organizations. Industrial Robot''s coverage includes, but is not restricted to:
Automatic assembly
Flexible manufacturing
Programming optimisation
Simulation and offline programming
Service robots
Autonomous robots
Swarm intelligence
Humanoid robots
Prosthetics and exoskeletons
Machine intelligence
Military robots
Underwater and aerial robots
Cooperative robots
Flexible grippers and tactile sensing
Robot vision
Teleoperation
Mobile robots
Search and rescue robots
Robot welding
Collision avoidance
Robotic machining
Surgical robots
Call for Papers 2020
AI for Autonomous Unmanned Systems
Agricultural Robot
Brain-Computer Interfaces for Human-Robot Interaction
Cooperative Robots
Robots for Environmental Monitoring
Rehabilitation Robots
Wearable Robotics/Exoskeletons.