Toward T-Wave Recognition of ECG Signals Through Modulated Ensemble Empirical Mode Decomposition

IF 0.5 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Advances in Data Science and Adaptive Analysis Pub Date : 2021-04-01 DOI:10.1142/S2424922X21500029
Chun-Hsiang Huang, T. Hsiao
{"title":"Toward T-Wave Recognition of ECG Signals Through Modulated Ensemble Empirical Mode Decomposition","authors":"Chun-Hsiang Huang, T. Hsiao","doi":"10.1142/S2424922X21500029","DOIUrl":null,"url":null,"abstract":"The cardiovascular diseases are the major cause of death globally. To diagnose heart disease, automatic recognition of ECG’s T-wave is necessary. Empirical mode decomposition (EMD) can be used to decompose nonlinear and nonstationary signals. However, using EMD to decompose ECG potentially leads to a mode mixing problem. This study proposes modulated EEMD (mEEMD) as a solution, which can solve mode mixing problems with almost no influence from noise. Furthermore, the mEEMD has a less problematic boundary side effect and does not cause any phase shift. The sensitivity of T-wave onset and offset recognition is [Formula: see text] and [Formula: see text].","PeriodicalId":47145,"journal":{"name":"Advances in Data Science and Adaptive Analysis","volume":"40 1","pages":"2150002:1-2150002:29"},"PeriodicalIF":0.5000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Science and Adaptive Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2424922X21500029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

Abstract

The cardiovascular diseases are the major cause of death globally. To diagnose heart disease, automatic recognition of ECG’s T-wave is necessary. Empirical mode decomposition (EMD) can be used to decompose nonlinear and nonstationary signals. However, using EMD to decompose ECG potentially leads to a mode mixing problem. This study proposes modulated EEMD (mEEMD) as a solution, which can solve mode mixing problems with almost no influence from noise. Furthermore, the mEEMD has a less problematic boundary side effect and does not cause any phase shift. The sensitivity of T-wave onset and offset recognition is [Formula: see text] and [Formula: see text].
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于调制综经验模态分解的心电信号t波识别研究
心血管疾病是全球死亡的主要原因。为了诊断心脏病,自动识别心电图的t波是必要的。经验模态分解(EMD)可以用来分解非线性和非平稳信号。然而,使用EMD分解心电信号可能会导致模式混合问题。本研究提出了调制EEMD (mEEMD)作为一种解决方案,它可以在几乎没有噪声影响的情况下解决模态混合问题。此外,mEEMD具有较少问题的边界副作用,并且不会引起任何相移。t波起始和偏移识别的灵敏度分别为[公式:见文]和[公式:见文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Data Science and Adaptive Analysis
Advances in Data Science and Adaptive Analysis MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
0.00%
发文量
13
期刊最新文献
Assessment Of Mars Analog Habitation Plans Using Network Analysis Methodologies A Novel Genetic-Inspired Binary Firefly Algorithm for Feature Selection in the Prediction of Cervical Cancer Big Data Analytics for Predictive System Maintenance Using Machine Learning Models Data Mining for Estimating the Impact of Physical Activity Levels on the Health-Related Well-Being A Novel Autoencoder Deep Architecture for Detecting the Outlier in Heterogeneous Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1