Semi-Supervised Deep Learning System for Epileptic Seizures Onset Prediction

Ahmed M. Abdelhameed, M. Bayoumi
{"title":"Semi-Supervised Deep Learning System for Epileptic Seizures Onset Prediction","authors":"Ahmed M. Abdelhameed, M. Bayoumi","doi":"10.1109/ICMLA.2018.00191","DOIUrl":null,"url":null,"abstract":"The advance prediction of seizures before its onset has been a challenging task for scientists for a long time. It is still the epileptic patients' hope to find an effective way of preventing seizures to improve the quality of their lives. In this paper, using an innovative mixing of unsupervised and supervised deep learning techniques, we propose a novel epileptic seizure prediction system using electroencephalogram (EEG) recordings from the human brains. The proposed system is built upon classifying between the interictal and the preictal brain states. The proposed system uses two-dimensional deep convolutional autoencoder for learning the best discriminative spatial features from the multichannel unlabeled raw EEG recordings. A Bidirectional Long Short-Term Memory recurrent neural network is used for classification based on the temporal information. To help achieve faster learning and reliable convergence for our system, the transfer learning technique is used for initializing the weights for the patient-specific networks. Within, up to one hour of prediction window, our system achieved an average sensitivity of 94.6% and average low false prediction alarm rate of 0.04FP/h which makes it one of the most efficient among state-of-the-art methods.","PeriodicalId":6533,"journal":{"name":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"17 1","pages":"1186-1191"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2018.00191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

The advance prediction of seizures before its onset has been a challenging task for scientists for a long time. It is still the epileptic patients' hope to find an effective way of preventing seizures to improve the quality of their lives. In this paper, using an innovative mixing of unsupervised and supervised deep learning techniques, we propose a novel epileptic seizure prediction system using electroencephalogram (EEG) recordings from the human brains. The proposed system is built upon classifying between the interictal and the preictal brain states. The proposed system uses two-dimensional deep convolutional autoencoder for learning the best discriminative spatial features from the multichannel unlabeled raw EEG recordings. A Bidirectional Long Short-Term Memory recurrent neural network is used for classification based on the temporal information. To help achieve faster learning and reliable convergence for our system, the transfer learning technique is used for initializing the weights for the patient-specific networks. Within, up to one hour of prediction window, our system achieved an average sensitivity of 94.6% and average low false prediction alarm rate of 0.04FP/h which makes it one of the most efficient among state-of-the-art methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
半监督深度学习系统癫痫发作预测
长期以来,在癫痫发作前对其进行提前预测一直是科学家们面临的一项具有挑战性的任务。找到一种有效的预防癫痫发作的方法,提高癫痫患者的生活质量,仍然是癫痫患者的希望。在本文中,我们利用无监督和有监督深度学习技术的创新混合,提出了一种利用人脑脑电图(EEG)记录的新型癫痫发作预测系统。所提出的系统是建立在对大脑的间歇状态和前脑状态进行分类的基础上的。该系统使用二维深度卷积自编码器从多通道未标记的原始EEG记录中学习最佳判别空间特征。基于时间信息,采用双向长短期记忆递归神经网络进行分类。为了帮助我们的系统实现更快的学习和可靠的收敛,我们使用迁移学习技术来初始化特定患者网络的权重。在长达一小时的预测窗口内,我们的系统实现了94.6%的平均灵敏度和0.04FP/h的平均低错误预测报警率,这使其成为最有效的最先进的方法之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teacher/Student Deep Semi-Supervised Learning for Training with Noisy Labels Asymmetric Gaussian-Based Statistical Models Using Markov Chain Monte Carlo Techniques for Image Categorization Real-Time Prediction of Employee Engagement Using Social Media and Text Mining Fine-Grained Image Classification via Spatial Saliency Extraction SEDAT: Sentiment and Emotion Detection in Arabic Text Using CNN-LSTM Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1