XPlacer: Automatic Analysis of Data Access Patterns on Heterogeneous CPU/GPU Systems

P. Pirkelbauer, Pei-Hung Lin, T. Vanderbruggen, C. Liao
{"title":"XPlacer: Automatic Analysis of Data Access Patterns on Heterogeneous CPU/GPU Systems","authors":"P. Pirkelbauer, Pei-Hung Lin, T. Vanderbruggen, C. Liao","doi":"10.1109/IPDPS47924.2020.00106","DOIUrl":null,"url":null,"abstract":"This paper presents XPlacer, a framework to automatically analyze problematic data access patterns in C++ and CUDA code. XPlacer records heap memory operations in both host and device code for later analysis. To this end, XPlacer instruments read and write operations, function calls, and kernel launches. Programmers mark points in the program execution where the recorded data is analyzed and anomalies diagnosed. XPlacer reports data access anti-patterns, including alternating CPU/GPU accesses to the same memory, memory with low access density, and unnecessary data transfers. The diagnostic also produces summative information about the recorded accesses, which aids users in identifying code that could degrade performance.The paper evaluates XPlacer using LULESH, a Lawrence Livermore proxy application, Rodina benchmarks, and an implementation of the Smith-Waterman algorithm. XPlacer diagnosed several performance issues in these codes. The elimination of a performance problem in LULESH resulted in a 3x speedup on a heterogeneous platform combining Intel CPUs and Nvidia GPUs.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"6 1","pages":"997-1007"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents XPlacer, a framework to automatically analyze problematic data access patterns in C++ and CUDA code. XPlacer records heap memory operations in both host and device code for later analysis. To this end, XPlacer instruments read and write operations, function calls, and kernel launches. Programmers mark points in the program execution where the recorded data is analyzed and anomalies diagnosed. XPlacer reports data access anti-patterns, including alternating CPU/GPU accesses to the same memory, memory with low access density, and unnecessary data transfers. The diagnostic also produces summative information about the recorded accesses, which aids users in identifying code that could degrade performance.The paper evaluates XPlacer using LULESH, a Lawrence Livermore proxy application, Rodina benchmarks, and an implementation of the Smith-Waterman algorithm. XPlacer diagnosed several performance issues in these codes. The elimination of a performance problem in LULESH resulted in a 3x speedup on a heterogeneous platform combining Intel CPUs and Nvidia GPUs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
XPlacer:异构CPU/GPU系统上数据访问模式的自动分析
本文介绍了XPlacer,一个在c++和CUDA代码中自动分析有问题的数据访问模式的框架。XPlacer记录主机和设备代码中的堆内存操作,以供以后分析。为此,XPlacer使用读写操作、函数调用和内核启动。程序员在程序执行过程中标记分析记录数据和诊断异常的点。XPlacer报告数据访问反模式,包括对同一内存的CPU/GPU交替访问、低访问密度的内存以及不必要的数据传输。诊断还生成关于记录的访问的总结性信息,这有助于用户识别可能降低性能的代码。本文使用LULESH (Lawrence Livermore代理应用程序)、Rodina基准测试和Smith-Waterman算法的实现来评估XPlacer。XPlacer诊断了这些代码中的几个性能问题。LULESH消除了性能问题,在英特尔cpu和英伟达gpu相结合的异构平台上加速了3倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynch-SGBDT: Train Stochastic Gradient Boosting Decision Trees in an Asynchronous Parallel Manner Resilience at Extreme Scale and Connections with Other Domains A Tale of Two C's: Convergence and Composability 12 Ways to Fool the Masses with Irreproducible Results Is Asymptotic Cost Analysis Useful in Developing Practical Parallel Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1