GLoop: an event-driven runtime for consolidating GPGPU applications

Yusuke Suzuki, H. Yamada, S. Kato, K. Kono
{"title":"GLoop: an event-driven runtime for consolidating GPGPU applications","authors":"Yusuke Suzuki, H. Yamada, S. Kato, K. Kono","doi":"10.1145/3127479.3132023","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) have become an attractive platform for general-purpose computing (GPGPU) in various domains. Making GPUs a time-multiplexing resource is a key to consolidating GPGPU applications (apps) in multi-tenant cloud platforms. However, advanced GPGPU apps pose a new challenge for consolidation. Such highly functional GPGPU apps, referred to as GPU eaters, can easily monopolize a shared GPU and starve collocated GPGPU apps. This paper presents GLoop, which is a software runtime that enables us to consolidate GPGPU apps including GPU eaters. GLoop offers an event-driven programming model, which allows GLoop-based apps to inherit the GPU eaters' high functionality while proportionally scheduling them on a shared GPU in an isolated manner. We implemented a prototype of GLoop and ported eight GPU eaters on it. The experimental results demonstrate that our prototype successfully schedules the consolidated GPGPU apps on the basis of its scheduling policy and isolates resources among them.","PeriodicalId":20679,"journal":{"name":"Proceedings of the 2017 Symposium on Cloud Computing","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 Symposium on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3127479.3132023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Graphics processing units (GPUs) have become an attractive platform for general-purpose computing (GPGPU) in various domains. Making GPUs a time-multiplexing resource is a key to consolidating GPGPU applications (apps) in multi-tenant cloud platforms. However, advanced GPGPU apps pose a new challenge for consolidation. Such highly functional GPGPU apps, referred to as GPU eaters, can easily monopolize a shared GPU and starve collocated GPGPU apps. This paper presents GLoop, which is a software runtime that enables us to consolidate GPGPU apps including GPU eaters. GLoop offers an event-driven programming model, which allows GLoop-based apps to inherit the GPU eaters' high functionality while proportionally scheduling them on a shared GPU in an isolated manner. We implemented a prototype of GLoop and ported eight GPU eaters on it. The experimental results demonstrate that our prototype successfully schedules the consolidated GPGPU apps on the basis of its scheduling policy and isolates resources among them.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GLoop:用于整合GPGPU应用程序的事件驱动运行时
图形处理单元(Graphics processing unit, gpu)已经成为通用计算(general-purpose computing, GPGPU)的一个有吸引力的平台。将gpu作为时间复用资源是在多租户云平台中整合GPGPU应用(app)的关键。然而,先进的GPGPU应用程序对整合提出了新的挑战。这种高功能的GPGPU应用程序,被称为GPU吞食者,可以很容易地垄断共享的GPU,并饿死配置的GPGPU应用程序。本文介绍了GLoop,它是一个软件运行时,使我们能够整合包括GPU食者在内的GPGPU应用程序。GLoop提供了一个事件驱动的编程模型,它允许基于GLoop的应用程序继承GPU吞食者的高功能,同时以隔离的方式在共享GPU上按比例调度它们。我们实现了一个GLoop的原型,并在上面移植了8个GPU吞食器。实验结果表明,我们的原型在调度策略的基础上成功地调度了整合的GPGPU应用程序,并在它们之间隔离了资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Janus: supporting heterogeneous power management in virtualized environments On-demand virtualization for live migration in bare metal cloud Preserving I/O prioritization in virtualized OSes To edge or not to edge? Indy: a software system for the dense cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1