Determination of Hydrodynamic Masses and Roll Periods of Ships in Shallow Water

Larissa Jannsen, S. Krüger
{"title":"Determination of Hydrodynamic Masses and Roll Periods of Ships in Shallow Water","authors":"Larissa Jannsen, S. Krüger","doi":"10.1115/omae2021-62782","DOIUrl":null,"url":null,"abstract":"\n Due to the fast increase of the vessels’ size over the past few years the actual water depth is becoming more and more relevant for seakeeping problems. The highly frequented sea route TSS Terschelling – German Bight for example is a shallow water route for large vessels which are now affected by the reduced keel clearance. Many shallow water depth areas occur also in coastal areas or inland seas. If a vessel is travelling in shallow water sea states, the hydrodynamic forces will change compared to deep water sea states and they are essential for further seaway calculations. Furthermore, a rough but easy evaluation of the incoming seaway is the roll period. Shallow water effects should be taken into account for calculating roll periods and thereby predicting a manageable or risky seaway situation. This paper presents the implementation of shallow water effects into an existing 2D panel code. With this panel code the hydrodynamic forces for the vessel’s frames are calculated based on the potential theory in the frequency domain, which is a validated approach in the early design stage. The panel code is part of the ship design environment E4 which is being developed by the Institute of Ship Design and Ship Safety, among others. With the expanded method it is possible to calculate hydrodynamic forces also in shallow water in all degrees of freedom. Therefore, the frame motions are converted to global ship motions. Furthermore, for the usage in the early design stage the calculations should be fast but also accurate. The obtained calculation results are therefore validated with full scale measurement using Inertial-Measurement-Units.","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the fast increase of the vessels’ size over the past few years the actual water depth is becoming more and more relevant for seakeeping problems. The highly frequented sea route TSS Terschelling – German Bight for example is a shallow water route for large vessels which are now affected by the reduced keel clearance. Many shallow water depth areas occur also in coastal areas or inland seas. If a vessel is travelling in shallow water sea states, the hydrodynamic forces will change compared to deep water sea states and they are essential for further seaway calculations. Furthermore, a rough but easy evaluation of the incoming seaway is the roll period. Shallow water effects should be taken into account for calculating roll periods and thereby predicting a manageable or risky seaway situation. This paper presents the implementation of shallow water effects into an existing 2D panel code. With this panel code the hydrodynamic forces for the vessel’s frames are calculated based on the potential theory in the frequency domain, which is a validated approach in the early design stage. The panel code is part of the ship design environment E4 which is being developed by the Institute of Ship Design and Ship Safety, among others. With the expanded method it is possible to calculate hydrodynamic forces also in shallow water in all degrees of freedom. Therefore, the frame motions are converted to global ship motions. Furthermore, for the usage in the early design stage the calculations should be fast but also accurate. The obtained calculation results are therefore validated with full scale measurement using Inertial-Measurement-Units.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
浅水船舶水动力质量和横摇周期的测定
近年来,由于船舶尺寸的迅速增大,船舶的实际水深与船舶的耐波性问题的关系越来越密切。例如,频繁使用的TSS Terschelling - German Bight航线是大型船只的浅水航线,现在受到龙骨间隙减少的影响。许多浅水深度区也出现在沿海地区或内陆海。如果船舶在浅水海况下航行,水动力与深水海况相比会发生变化,这对于进一步的航道计算是必不可少的。此外,一个粗略但简单的估算入海航道的方法是滚动周期。在计算滚动周期时应考虑浅水效应,从而预测可控制或危险的航道情况。本文介绍了在现有的二维面板代码中实现浅水效果。利用该面板代码,基于频域势理论计算了船体框架的水动力,这是一种在设计初期得到验证的方法。面板规范是船舶设计环境E4的一部分,该环境正在由船舶设计和船舶安全研究所等机构开发。用扩展的方法也可以计算浅水中所有自由度的水动力。因此,将帧运动转换为全局船舶运动。此外,对于早期设计阶段的使用,计算既要快速又要准确。因此,利用惯性测量单元进行了满量程测量,验证了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Large Autonomous Subsea Freight-Glider for Liquid CO2 Transportation Assessment of Wind and Wave High-Resolution Forecasts During High-Energy Weather Events in the Brazilian Coast A Low-Cost Modular Image-Based Approach to Characterize Large-Field Wave Shapes in Glass Wave Flume Coupling of a Boundary Element Method With a Boundary Layer Method for Accurate Rudder Force Calculation Within the Early Design Stage Hydrodynamic Impact on Wedges During Water Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1