S. Banerjee, Satyaranjan Bairagi, M. Shahadat, S. W. Ali
{"title":"Poly[vinylidene difluoride] [PVDF] Nanofibrous Web Based Piezoelectric Material: A Futuristic Solution for Flexible Piezoelectric Energy Harvester","authors":"S. Banerjee, Satyaranjan Bairagi, M. Shahadat, S. W. Ali","doi":"10.2174/2452271605666220428101732","DOIUrl":null,"url":null,"abstract":"\n\nPiezoelectric materials are gradually becoming the attractive materials of research as far as energy harvesting technologies are concerned. The piezoelectric effect is a pressure-driven phenomenon that is exhibited by various kinds of crystals, ceramics, polymers, and composites. However, polymers are preferred in piezoelectric applications owing to their flexibility and light weight. They can easily be incorporated into electronic wearables that cover the demand for flexibility which is one of the most important requirements to improve technology. In this regard, the piezoelectric polymers are found as suitable candidates for energy harvesting. The present review provides a conclusive outlook of polymer-based piezoelectric materials in terms of doping of different fillers in different piezoelectric polymers with a special focus on polyvinylidene fluoride [PVDF] polymer to develop flexible energy harvesters. Moreover, the electrospinning process, a composite fabrication technique has been discussed to cover all the aspects of processing and optimization. Based on significant energy storage capacity PVDF-based flexible electrospun web could be effectively used in day-to-day life.\n","PeriodicalId":10768,"journal":{"name":"Current Applied Polymer Science","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Polymer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2452271605666220428101732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric materials are gradually becoming the attractive materials of research as far as energy harvesting technologies are concerned. The piezoelectric effect is a pressure-driven phenomenon that is exhibited by various kinds of crystals, ceramics, polymers, and composites. However, polymers are preferred in piezoelectric applications owing to their flexibility and light weight. They can easily be incorporated into electronic wearables that cover the demand for flexibility which is one of the most important requirements to improve technology. In this regard, the piezoelectric polymers are found as suitable candidates for energy harvesting. The present review provides a conclusive outlook of polymer-based piezoelectric materials in terms of doping of different fillers in different piezoelectric polymers with a special focus on polyvinylidene fluoride [PVDF] polymer to develop flexible energy harvesters. Moreover, the electrospinning process, a composite fabrication technique has been discussed to cover all the aspects of processing and optimization. Based on significant energy storage capacity PVDF-based flexible electrospun web could be effectively used in day-to-day life.