Neural network representability of fully ionized plasma fluid model closures

R. Maulik, N. Garland, Xianzhu Tang, Prasanna Balaprakash
{"title":"Neural network representability of fully ionized plasma fluid model closures","authors":"R. Maulik, N. Garland, Xianzhu Tang, Prasanna Balaprakash","doi":"10.1063/5.0006457","DOIUrl":null,"url":null,"abstract":"The closure problem in fluid modeling is a well-known challenge to modelers aiming to accurately describe their system of interest. Over many years, analytic formulations in a wide range of regimes have been presented but a practical, generalized fluid closure for magnetized plasmas remains an elusive goal. In this study, as a first step towards constructing a novel data based approach to this problem, we apply ever-maturing machine learning methods to assess the capability of neural network architectures to reproduce crucial physics inherent in popular magnetized plasma closures. We find encouraging results, indicating the applicability of neural networks to closure physics but also arrive at recommendations on how one should choose appropriate network architectures for given locality properties dictated by underlying physics of the plasma.","PeriodicalId":8424,"journal":{"name":"arXiv: Computational Physics","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0006457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The closure problem in fluid modeling is a well-known challenge to modelers aiming to accurately describe their system of interest. Over many years, analytic formulations in a wide range of regimes have been presented but a practical, generalized fluid closure for magnetized plasmas remains an elusive goal. In this study, as a first step towards constructing a novel data based approach to this problem, we apply ever-maturing machine learning methods to assess the capability of neural network architectures to reproduce crucial physics inherent in popular magnetized plasma closures. We find encouraging results, indicating the applicability of neural networks to closure physics but also arrive at recommendations on how one should choose appropriate network architectures for given locality properties dictated by underlying physics of the plasma.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全电离等离子体流体模型闭包的神经网络可表征性
流体建模中的闭包问题对于建模者来说是一个众所周知的挑战,建模者的目标是准确地描述他们感兴趣的系统。多年来,已经提出了各种形式的解析公式,但实际的、广义的磁化等离子体流体闭合仍然是一个难以实现的目标。在本研究中,作为构建基于数据的新方法解决该问题的第一步,我们应用日益成熟的机器学习方法来评估神经网络架构重现流行磁化等离子体闭包中固有的关键物理特性的能力。我们发现了令人鼓舞的结果,表明神经网络对闭合物理的适用性,但也得出了关于如何为给定的由等离子体基础物理决定的局部性选择适当的网络架构的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and computation for non-equilibrium gas dynamics: Beyond single relaxation time kinetic models Space-time computation and visualization of the electromagnetic fields and potentials generated by moving point charges Sparse Gaussian process potentials: Application to lithium diffusivity in superionic conducting solid electrolytes Reduced ionic diffusion by the dynamic electron–ion collisions in warm dense hydrogen HL-LHC Computing Review: Common Tools and Community Software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1