Stefany G. Medellín‐González, L. Ureña‐López, A. González-Morales
{"title":"Nonlinear cosmological structure with ultralight bosons via modified gravity","authors":"Stefany G. Medellín‐González, L. Ureña‐López, A. González-Morales","doi":"10.1103/PHYSREVD.103.083509","DOIUrl":null,"url":null,"abstract":"Ultra-light bosons as dark matter has become a model of major interest in Cosmology, due to the possible imprint of a distinct signature in the cosmic structure both at the linear and non-linear scales. In this work we show that the equations of motion for density perturbations for this kind of models can be written in terms of a modified gravitational potential. Taking advantage of this parallelism, we use the MG-PICOLA code originally developed for modified gravity models to evolve the density field of axion models with and without self-interaction. Our results indicate that the quantum potential adds extra suppression of power at the non-linear level, and it is even capable of smoothing any bumpy features initially present in the mass power spectrum.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVD.103.083509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Ultra-light bosons as dark matter has become a model of major interest in Cosmology, due to the possible imprint of a distinct signature in the cosmic structure both at the linear and non-linear scales. In this work we show that the equations of motion for density perturbations for this kind of models can be written in terms of a modified gravitational potential. Taking advantage of this parallelism, we use the MG-PICOLA code originally developed for modified gravity models to evolve the density field of axion models with and without self-interaction. Our results indicate that the quantum potential adds extra suppression of power at the non-linear level, and it is even capable of smoothing any bumpy features initially present in the mass power spectrum.