Graph convolutional neural networks‐based assessment of students' collaboration ability

Jinjiao Lin, Tianqi Gao, Yuhua Wen, Xianmiao Yu, Bi-Zhen You, Yanfang Yin, Yanze Zhao, Haitao Pu
{"title":"Graph convolutional neural networks‐based assessment of students' collaboration ability","authors":"Jinjiao Lin, Tianqi Gao, Yuhua Wen, Xianmiao Yu, Bi-Zhen You, Yanfang Yin, Yanze Zhao, Haitao Pu","doi":"10.1002/cpe.7395","DOIUrl":null,"url":null,"abstract":"As 21st‐century skills have become increasingly important, collaboration ability is now considered essential in many areas of life. Different theoretical frameworks and assessment tools have emerged to measure this skill. However, more applied studies on its implementation and assessment in current educational settings are required. This research accordingly uses Graph Convolutional Neural Networks (GCNs) to assess students' collaboration ability from students' assignments. The Pearson correlation coefficient is used to measure the similarity of the level of students' collaboration ability, and similar students are linked together to establish an adjacency matrix. By sorting through relevant literature and selecting the feature words that represent the strength of collaboration ability, calculating the similarity between the preprocessed student data and each selected feature word, after which the highest value of the similarity as the feature value of the student for this feature and establish the student feature matrix. Finally, the GCNs are jointly trained by the adjacency matrix and the feature matrix. The results show that this method can effectively assess students' collaboration ability. Moreover, compared with other text classification methods, the GCNs selected in this paper has higher accuracy.","PeriodicalId":10584,"journal":{"name":"Concurrency and Computation: Practice and Experience","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation: Practice and Experience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cpe.7395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

As 21st‐century skills have become increasingly important, collaboration ability is now considered essential in many areas of life. Different theoretical frameworks and assessment tools have emerged to measure this skill. However, more applied studies on its implementation and assessment in current educational settings are required. This research accordingly uses Graph Convolutional Neural Networks (GCNs) to assess students' collaboration ability from students' assignments. The Pearson correlation coefficient is used to measure the similarity of the level of students' collaboration ability, and similar students are linked together to establish an adjacency matrix. By sorting through relevant literature and selecting the feature words that represent the strength of collaboration ability, calculating the similarity between the preprocessed student data and each selected feature word, after which the highest value of the similarity as the feature value of the student for this feature and establish the student feature matrix. Finally, the GCNs are jointly trained by the adjacency matrix and the feature matrix. The results show that this method can effectively assess students' collaboration ability. Moreover, compared with other text classification methods, the GCNs selected in this paper has higher accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的学生协作能力评估
随着21世纪的技能变得越来越重要,协作能力在生活的许多领域都被认为是必不可少的。已经出现了不同的理论框架和评估工具来衡量这种技能。但是,在当前的教育环境中,需要对其实施和评价进行更多的应用研究。因此,本研究使用图卷积神经网络(GCNs)从学生的作业中评估学生的协作能力。采用Pearson相关系数来衡量学生协作能力水平的相似度,将相似的学生联系在一起,建立邻接矩阵。通过梳理相关文献,选取代表协作能力强弱的特征词,计算预处理后的学生数据与所选取的每个特征词的相似度,取相似度的最高值作为该特征的学生特征值,建立学生特征矩阵。最后利用邻接矩阵和特征矩阵对GCNs进行联合训练。结果表明,该方法能有效地评价学生的协作能力。此外,与其他文本分类方法相比,本文选择的GCNs具有更高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Time‐based DDoS attack detection through hybrid LSTM‐CNN model architectures: An investigation of many‐to‐one and many‐to‐many approaches Distributed low‐latency broadcast scheduling for multi‐channel duty‐cycled wireless IoT networks Open‐domain event schema induction via weighted attentive hypergraph neural network Fused GEMMs towards an efficient GPU implementation of the ADER‐DG method in SeisSol Simulation method for infrared radiation transmission characteristics of typical ship targets based on optical remote sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1