The Many Kinds of Creepware Used for Interpersonal Attacks

Kevin A. Roundy, Paula Barmaimon Mendelberg, Nicola Dell, Damon McCoy, Daniel N. Nissani, T. Ristenpart, Acar Tamersoy
{"title":"The Many Kinds of Creepware Used for Interpersonal Attacks","authors":"Kevin A. Roundy, Paula Barmaimon Mendelberg, Nicola Dell, Damon McCoy, Daniel N. Nissani, T. Ristenpart, Acar Tamersoy","doi":"10.1109/SP40000.2020.00069","DOIUrl":null,"url":null,"abstract":"Technology increasingly facilitates interpersonal attacks such as stalking, abuse, and other forms of harassment. While prior studies have examined the ecosystem of software designed for stalking, there exists an unstudied, larger landscape of apps—what we call creepware—used for interpersonal attacks. In this paper, we initiate a study of creepware using access to a dataset detailing the mobile apps installed on over 50 million Android devices. We develop a new algorithm, CreepRank, that uses the principle of guilt by association to help surface previously unknown examples of creepware, which we then characterize through a combination of quantitative and qualitative methods. We discovered apps used for harassment, impersonation, fraud, information theft, concealment, and even apps that purport to defend victims against such threats. As a result of our work, the Google Play Store has already removed hundreds of apps for policy violations. More broadly, our findings and techniques improve understanding of the creepware ecosystem, and will inform future efforts that aim to mitigate interpersonal attacks.","PeriodicalId":6849,"journal":{"name":"2020 IEEE Symposium on Security and Privacy (SP)","volume":"3 1","pages":"626-643"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium on Security and Privacy (SP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SP40000.2020.00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Technology increasingly facilitates interpersonal attacks such as stalking, abuse, and other forms of harassment. While prior studies have examined the ecosystem of software designed for stalking, there exists an unstudied, larger landscape of apps—what we call creepware—used for interpersonal attacks. In this paper, we initiate a study of creepware using access to a dataset detailing the mobile apps installed on over 50 million Android devices. We develop a new algorithm, CreepRank, that uses the principle of guilt by association to help surface previously unknown examples of creepware, which we then characterize through a combination of quantitative and qualitative methods. We discovered apps used for harassment, impersonation, fraud, information theft, concealment, and even apps that purport to defend victims against such threats. As a result of our work, the Google Play Store has already removed hundreds of apps for policy violations. More broadly, our findings and techniques improve understanding of the creepware ecosystem, and will inform future efforts that aim to mitigate interpersonal attacks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于人际攻击的各种爬虫
科技日益促进人际攻击,如跟踪、虐待和其他形式的骚扰。虽然之前的研究已经调查了为跟踪而设计的软件生态系统,但还存在一个未经研究的、更大范围的应用程序——我们称之为creepware——用于人际攻击。在本文中,我们通过访问一个详细介绍安装在5000多万台Android设备上的移动应用程序的数据集,启动了一项关于creepware的研究。我们开发了一种新的算法,CreepRank,它使用联想内疚的原则来帮助发现以前未知的爬行器例子,然后我们通过定量和定性方法的结合来描述这些例子。我们发现了用于骚扰、冒充、欺诈、信息盗窃、隐瞒的应用程序,甚至还有声称保护受害者免受此类威胁的应用程序。由于我们的努力,Google Play商店已经删除了数百个违反政策的应用程序。更广泛地说,我们的发现和技术提高了对爬行软件生态系统的理解,并将为未来旨在减轻人际攻击的努力提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unexpected Data Dependency Creation and Chaining: A New Attack to SDN TextExerciser: Feedback-driven Text Input Exercising for Android Applications Ijon: Exploring Deep State Spaces via Fuzzing Efficient and Secure Multiparty Computation from Fixed-Key Block Ciphers EverCrypt: A Fast, Verified, Cross-Platform Cryptographic Provider
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1