Palmprint Recognition Using Hessian Matrix and Two-Component Partition Method

IF 0.6 Q4 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS International Journal of Digital Crime and Forensics Pub Date : 2021-01-01 DOI:10.4018/ijdcf.2021010102
Jyotismita Chaki, N. Dey
{"title":"Palmprint Recognition Using Hessian Matrix and Two-Component Partition Method","authors":"Jyotismita Chaki, N. Dey","doi":"10.4018/ijdcf.2021010102","DOIUrl":null,"url":null,"abstract":"Palmprint recognition has been comprehensively examined in the past couple of years and various undertakings are done to use it as a biometric methodology for various applications. The point of this study is to construct an effective palmprint recognition technique with low computational multifaceted nature and along these lines to expand the acknowledgment and precision. Since edges are free from distortion, they are very reliable and subsequently used for palm print recognition. The originality of the proposed technique depends on new area of interest (ROI) extraction took after by new principal line extraction and texture matching strategy. The new principal line extraction technique is created by using the Hessian matrix and Eigen value. The texture matching of the ROI is done using new 2-component partition method by segmenting the image into comparative and non-comparative edges. Examinations are finished on a database and exploratory results exhibit that the accuracy of the proposed method is comparable to past methods used for palmprint recognition.","PeriodicalId":44650,"journal":{"name":"International Journal of Digital Crime and Forensics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Digital Crime and Forensics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijdcf.2021010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Palmprint recognition has been comprehensively examined in the past couple of years and various undertakings are done to use it as a biometric methodology for various applications. The point of this study is to construct an effective palmprint recognition technique with low computational multifaceted nature and along these lines to expand the acknowledgment and precision. Since edges are free from distortion, they are very reliable and subsequently used for palm print recognition. The originality of the proposed technique depends on new area of interest (ROI) extraction took after by new principal line extraction and texture matching strategy. The new principal line extraction technique is created by using the Hessian matrix and Eigen value. The texture matching of the ROI is done using new 2-component partition method by segmenting the image into comparative and non-comparative edges. Examinations are finished on a database and exploratory results exhibit that the accuracy of the proposed method is comparable to past methods used for palmprint recognition.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hessian矩阵和双分量分割方法的掌纹识别
在过去的几年里,人们对掌纹识别进行了全面的研究,并开展了各种工作,将其作为一种生物识别方法用于各种应用。本研究的重点是在此基础上构建一种低计算面性的有效掌纹识别技术,以提高识别的识别率和精度。由于边缘没有失真,因此非常可靠,随后可用于掌纹识别。该方法的独创性在于采用新的主线提取和纹理匹配策略提取新的感兴趣区域(ROI)。利用黑森矩阵和本征值,提出了一种新的主线提取方法。利用新的2分量分割方法,将图像分割成比较边缘和非比较边缘,实现感兴趣区域的纹理匹配。在数据库上完成了测试,探索性结果表明,所提出的方法的准确性与过去用于掌纹识别的方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Digital Crime and Forensics
International Journal of Digital Crime and Forensics COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
15
期刊最新文献
Efficient Task Offloading for Mobile Edge Computing in Vehicular Networks Examining the Behavior of Web Browsers Using Popular Forensic Tools Laboratory Dangerous Operation Behavior Detection System Based on Deep Learning Algorithm A Novel Watermarking Scheme for Audio Data Stored in Third Party Servers Assurance of Network Communication Information Security Based on Cyber-Physical Fusion and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1