{"title":"Closed-form analysis of the decoupling properties of artificial dielectric layers","authors":"D. Cavallo, W. Syed, A. Neto","doi":"10.1109/APS.2014.6904447","DOIUrl":null,"url":null,"abstract":"We present an analytical formulation to model artificial dielectric layers (ADLs), for arbitrary field incidence. We first derive the solution for the magnetic current distribution on a single layer, under generic plane-wave illumination. This solution is found in closed-form by expanding the total current with proper entire-domain basis functions. Simple analytical expressions are also derived for the scattered field and the equivalent sheet impedance of the layer. The formulation is then extended to the multi-layer case, by including the higher-order interaction between parallel layers in analytical form. The method can be used, for example, to describe the radiation of a source located in the close proximity of the ADL. The theoretical analysis agrees well with simulations from commercial electromagnetic solvers and measurements from a X-band prototype.","PeriodicalId":6663,"journal":{"name":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","volume":"44 1","pages":"231-232"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Antennas and Propagation Society International Symposium (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2014.6904447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present an analytical formulation to model artificial dielectric layers (ADLs), for arbitrary field incidence. We first derive the solution for the magnetic current distribution on a single layer, under generic plane-wave illumination. This solution is found in closed-form by expanding the total current with proper entire-domain basis functions. Simple analytical expressions are also derived for the scattered field and the equivalent sheet impedance of the layer. The formulation is then extended to the multi-layer case, by including the higher-order interaction between parallel layers in analytical form. The method can be used, for example, to describe the radiation of a source located in the close proximity of the ADL. The theoretical analysis agrees well with simulations from commercial electromagnetic solvers and measurements from a X-band prototype.