A. Lundgren, C. Breuck, G. Siringo, A. Weiss, C. Agurto, F. Azagra, A. Belloche, M. Dumke, C. Durán, A. Eckart, E. González, R. Güsten, Á. Hacar, A. Kovács, E. Kreysa, F. Mac-Auliffe, Miguel Ángel Martínez, K. Menten, F. Montenegro, L. Nyman, R. Parra, J. Perez-Beaupuits, V. Révéret, C. Risacher, F. Schuller, T. Stanke, K. Torstensson, Percy Venegas, H. Wiesemeyer, F. Wyrowski
{"title":"An Era Comes to an End: The Legacy of LABOCA at APEX","authors":"A. Lundgren, C. Breuck, G. Siringo, A. Weiss, C. Agurto, F. Azagra, A. Belloche, M. Dumke, C. Durán, A. Eckart, E. González, R. Güsten, Á. Hacar, A. Kovács, E. Kreysa, F. Mac-Auliffe, Miguel Ángel Martínez, K. Menten, F. Montenegro, L. Nyman, R. Parra, J. Perez-Beaupuits, V. Révéret, C. Risacher, F. Schuller, T. Stanke, K. Torstensson, Percy Venegas, H. Wiesemeyer, F. Wyrowski","doi":"10.18727/0722-6691/5205","DOIUrl":null,"url":null,"abstract":"and the Hubble Deep Field (Smail et al., 1997; Hughes et al., 1998). Its main limitation was the small field of view and further progress was only possible by increasing the bolometer array sizes by an order of magnitude. This motivated the bolometer development group led by Ernst Kreysa at the Max Planck Institute for Radio Astronomy in Bonn (MPIfR), who had already provided the community with MAMBO, SIMBA and its line of predecessors, to build LABOCA (Siringo et al., 2009) for the new Atacama Pathfinder Experiment (APEX) 12-m submillimetre telescope as one of its main facility instruments (Güsten et al., 2006). With as many as 295 bolometers covering a circular field of 11.4 arcminutes, LABOCA would remain the largest submillimetre array till the SCUBA-2 instrument became available on the JCMT in 2012 (Holland et al., 2013). Being installed on APEX, LABOCA could also make optimal use of the excellent weather conditions on Chajnantor, where the 870-μm atmospheric window is observable for almost two-thirds of the available weather conditions (Otarola et al., 2019). In addition, seeing the same sky as ALMA optimised LABOCA’s synergy as the ideal source finder for ALMA. Andreas Lundgren1 Carlos De Breuck1 Giorgio Siringo1 Axel Weiß2 Claudio Agurto1 Francisco Azagra1 Arnaud Belloche2 Michael Dumke1 Carlos Durán1 Andreas Eckart2 Edouard González1 Rolf Güsten2 Alvaro Hacar3 Attila Kovács 4 Ernst Kreysa2 Felipe Mac-Auliffe1 Mauricio Martínez1 Karl M. Menten2 Francisco Montenegro1 Lars-Åke Nyman1 Rodrigo Parra1 Juan Pablo Pérez-Beaupuits1 Vincent Reveret5, 6 Christophe Risacher7 Frédéric Schuller8 Thomas Stanke1 Karl Torstensson1 Paulina Venegas1 Helmut Wiesemeyer2 Friedrich Wyrowski2","PeriodicalId":41738,"journal":{"name":"Jurnal The Messenger","volume":"20 1","pages":"7-15"},"PeriodicalIF":0.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal The Messenger","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18727/0722-6691/5205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMMUNICATION","Score":null,"Total":0}
引用次数: 0
Abstract
and the Hubble Deep Field (Smail et al., 1997; Hughes et al., 1998). Its main limitation was the small field of view and further progress was only possible by increasing the bolometer array sizes by an order of magnitude. This motivated the bolometer development group led by Ernst Kreysa at the Max Planck Institute for Radio Astronomy in Bonn (MPIfR), who had already provided the community with MAMBO, SIMBA and its line of predecessors, to build LABOCA (Siringo et al., 2009) for the new Atacama Pathfinder Experiment (APEX) 12-m submillimetre telescope as one of its main facility instruments (Güsten et al., 2006). With as many as 295 bolometers covering a circular field of 11.4 arcminutes, LABOCA would remain the largest submillimetre array till the SCUBA-2 instrument became available on the JCMT in 2012 (Holland et al., 2013). Being installed on APEX, LABOCA could also make optimal use of the excellent weather conditions on Chajnantor, where the 870-μm atmospheric window is observable for almost two-thirds of the available weather conditions (Otarola et al., 2019). In addition, seeing the same sky as ALMA optimised LABOCA’s synergy as the ideal source finder for ALMA. Andreas Lundgren1 Carlos De Breuck1 Giorgio Siringo1 Axel Weiß2 Claudio Agurto1 Francisco Azagra1 Arnaud Belloche2 Michael Dumke1 Carlos Durán1 Andreas Eckart2 Edouard González1 Rolf Güsten2 Alvaro Hacar3 Attila Kovács 4 Ernst Kreysa2 Felipe Mac-Auliffe1 Mauricio Martínez1 Karl M. Menten2 Francisco Montenegro1 Lars-Åke Nyman1 Rodrigo Parra1 Juan Pablo Pérez-Beaupuits1 Vincent Reveret5, 6 Christophe Risacher7 Frédéric Schuller8 Thomas Stanke1 Karl Torstensson1 Paulina Venegas1 Helmut Wiesemeyer2 Friedrich Wyrowski2
和哈勃深空(small et al., 1997);Hughes et al., 1998)。它的主要限制是视野小,进一步的进展只能通过增加一个数量级的辐射热计阵列的尺寸。这促使波恩马克斯普朗克射电天文研究所(MPIfR)的Ernst Kreysa领导的辐射热计开发小组为新的阿塔卡马探路者实验(APEX)建造LABOCA (Siringo等人,2009年),作为其主要设施仪器之一(g斯坦等人,2006年),该小组已经为社区提供了MAMBO, SIMBA及其前身系列。多达295个辐射热计覆盖11.4弧分的圆形场,LABOCA将保持最大的亚毫米阵列,直到2012年在JCMT上使用SCUBA-2仪器(Holland et al, 2013)。安装在APEX上,LABOCA还可以最佳地利用Chajnantor上良好的天气条件,在那里几乎三分之二的可用天气条件下都可以观察到870 μm的大气窗口(Otarola等人,2019)。此外,看到与ALMA相同的天空,优化了LABOCA作为ALMA理想的光源发现者的协同作用。Andreas lundgre1 Carlos De breuc1 Giorgio Siringo1 Axel wei1 Claudio Agurto1 Francisco Azagra1 Arnaud Belloche2 Michael Dumke1 Carlos Durán1 Andreas eckar2 Edouard González1 Rolf g sten2 Alvaro Hacar3 Attila Kovács 4 Ernst kreys2 Felipe macauliff1 Mauricio Martínez1 Karl M. Menten2 Francisco montegro1 Lars-Åke Nyman1 Rodrigo Parra1 Juan Pablo p - beaupuits1 Vincent Reveret5,克里斯托夫·里切尔·弗莱姆·萨勒克·托马斯·斯坦克·卡尔·托尔斯滕森·宝琳娜·维内加斯·赫尔穆特·维泽迈耶·弗里德里希·维罗斯基