Burmese word segmentation with Character Clustering and CRFs

M. Phyu, Kiyota Hashimoto
{"title":"Burmese word segmentation with Character Clustering and CRFs","authors":"M. Phyu, Kiyota Hashimoto","doi":"10.1109/JCSSE.2017.8025934","DOIUrl":null,"url":null,"abstract":"Word segmentation is one of the most fundamental processes for most natural language processing tasks. In particular, languages with no word boundary in writing such as Chinese, Japanese, Korean, Thai, and Burmese need it. However, the Burmese language still waits for a technique with good performance. In this paper, we propose a new technique for Burmese word segmentation employing the idea of Character Clustering for Conditional Random Fields. Character clusters are groups of some inseparable characters due to language characteristics. We proposed a set of 29 types of Burmese Character Clusters (BCCs) as rules, and Conditional Random Fields is applied as a sequential labelling machine learning method. We compared our proposed method with CRF without BCC and Syllable-based CRFs. The result shows that our proposed method achieved the highest performance.","PeriodicalId":6460,"journal":{"name":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"23 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 14th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2017.8025934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Word segmentation is one of the most fundamental processes for most natural language processing tasks. In particular, languages with no word boundary in writing such as Chinese, Japanese, Korean, Thai, and Burmese need it. However, the Burmese language still waits for a technique with good performance. In this paper, we propose a new technique for Burmese word segmentation employing the idea of Character Clustering for Conditional Random Fields. Character clusters are groups of some inseparable characters due to language characteristics. We proposed a set of 29 types of Burmese Character Clusters (BCCs) as rules, and Conditional Random Fields is applied as a sequential labelling machine learning method. We compared our proposed method with CRF without BCC and Syllable-based CRFs. The result shows that our proposed method achieved the highest performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于字符聚类和CRFs的缅甸语分词
分词是大多数自然语言处理任务中最基本的过程之一。特别是,汉语、日语、韩语、泰语、缅甸语等没有文字边界的语言需要它。然而,缅甸语仍在等待一种表现良好的技术。本文提出了一种基于条件随机场的字符聚类思想的缅甸语分词新技术。字簇是由于语言的特点而形成的一组不可分割的字。我们提出了一组29种缅甸语字符簇(bcc)作为规则,并将条件随机场(Conditional Random Fields)作为顺序标记机器学习方法。我们将该方法与不含BCC的CRF和基于音节的CRF进行了比较。结果表明,本文提出的方法达到了最高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isolate-Set-Based In-Memory Parallel Subgraph Matching Framework A Fast Attitude Estimation Method Using Homography Matrix IOT for smart farm: A case study of the Lingzhi mushroom farm at Maejo University Analyzing user reviews in Thai language toward aspects in mobile applications Front-rear crossover: A new crossover technique for solving a trap problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1