Huiqiang Mao, Yanzhi Li, Chenliang Li, Di Chen, Xiaoqing Wang, Yuming Deng
{"title":"PARS: Peers-aware Recommender System","authors":"Huiqiang Mao, Yanzhi Li, Chenliang Li, Di Chen, Xiaoqing Wang, Yuming Deng","doi":"10.1145/3366423.3380013","DOIUrl":null,"url":null,"abstract":"The presence or absence of one item in a recommendation list will affect the demand for other items because customers are often willing to switch to other items if their most preferred items are not available. The cross-item influence, called “peers effect”, has been largely ignored in the literature. In this paper, we develop a peers-aware recommender system, named PARS. We apply a ranking-based choice model to capture the cross-item influence and solve the resultant MaxMin problem with a decomposition algorithm. The MaxMin model solves for the recommendation decision in the meanwhile of estimating users’ preferences towards the items, which yields high-quality recommendations robust to input data variation. Experimental results illustrate that PARS outperforms a few frequently used methods in practice. An online evaluation with a flash sales scenario at Taobao also shows that PARS delivers significant improvements in terms of both conversion rates and user value.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The presence or absence of one item in a recommendation list will affect the demand for other items because customers are often willing to switch to other items if their most preferred items are not available. The cross-item influence, called “peers effect”, has been largely ignored in the literature. In this paper, we develop a peers-aware recommender system, named PARS. We apply a ranking-based choice model to capture the cross-item influence and solve the resultant MaxMin problem with a decomposition algorithm. The MaxMin model solves for the recommendation decision in the meanwhile of estimating users’ preferences towards the items, which yields high-quality recommendations robust to input data variation. Experimental results illustrate that PARS outperforms a few frequently used methods in practice. An online evaluation with a flash sales scenario at Taobao also shows that PARS delivers significant improvements in terms of both conversion rates and user value.