Gigahertz Phononic Integrated Circuits on Thin-Film Lithium Niobate on Sapphire

Felix M. Mayor, Wentao Jiang, Christopher J. Sarabalis, T. McKenna, J. Witmer, A. Safavi-Naeini
{"title":"Gigahertz Phononic Integrated Circuits on Thin-Film Lithium Niobate on Sapphire","authors":"Felix M. Mayor, Wentao Jiang, Christopher J. Sarabalis, T. McKenna, J. Witmer, A. Safavi-Naeini","doi":"10.1103/PHYSREVAPPLIED.15.014039","DOIUrl":null,"url":null,"abstract":"Acoustic devices play an important role in classical information processing. The slower speed and lower losses of mechanical waves enable compact and efficient elements for delaying, filtering, and storing of electric signals at radio and microwave frequencies. Discovering ways of better controlling the propagation of phonons on a chip is an important step towards enabling larger scale phononic circuits and systems. We present a platform, inspired by decades of advances in integrated photonics, that utilizes the strong piezoelectric effect in a thin film of lithium niobate on sapphire to excite guided acoustic waves immune from leakage into the bulk due to the phononic analogue of index-guiding. We demonstrate an efficient transducer matched to 50 ohm and guiding within a 1-micron wide mechanical waveguide as key building blocks of this platform. Putting these components together, we realize acoustic delay lines, racetrack resonators, and meander line waveguides for sensing applications. To evaluate the promise of this platform for emerging quantum technologies, we characterize losses at low temperature and measure quality factors on the order of 50,000 at 4 kelvin. Finally, we demonstrate phononic four-wave mixing in these circuits and measure the nonlinear coefficients to provide estimates of the power needed for relevant parametric processes.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVAPPLIED.15.014039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Acoustic devices play an important role in classical information processing. The slower speed and lower losses of mechanical waves enable compact and efficient elements for delaying, filtering, and storing of electric signals at radio and microwave frequencies. Discovering ways of better controlling the propagation of phonons on a chip is an important step towards enabling larger scale phononic circuits and systems. We present a platform, inspired by decades of advances in integrated photonics, that utilizes the strong piezoelectric effect in a thin film of lithium niobate on sapphire to excite guided acoustic waves immune from leakage into the bulk due to the phononic analogue of index-guiding. We demonstrate an efficient transducer matched to 50 ohm and guiding within a 1-micron wide mechanical waveguide as key building blocks of this platform. Putting these components together, we realize acoustic delay lines, racetrack resonators, and meander line waveguides for sensing applications. To evaluate the promise of this platform for emerging quantum technologies, we characterize losses at low temperature and measure quality factors on the order of 50,000 at 4 kelvin. Finally, we demonstrate phononic four-wave mixing in these circuits and measure the nonlinear coefficients to provide estimates of the power needed for relevant parametric processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蓝宝石上铌酸锂薄膜的千兆赫声子集成电路
声学器件在经典信息处理中起着重要的作用。机械波的速度较慢,损耗较低,这使得在无线电和微波频率上延迟、滤波和存储电信号的元件紧凑而有效。发现更好地控制声子在芯片上传播的方法是实现更大规模声子电路和系统的重要一步。受集成光子学数十年进步的启发,我们提出了一个平台,该平台利用蓝宝石上铌酸锂薄膜中的强压电效应来激发引导声波,从而避免由于声子模拟的指数引导而泄漏到体中。我们展示了一个匹配50欧姆的高效换能器,并在1微米宽的机械波导内引导,作为该平台的关键组成部分。将这些组件组合在一起,我们实现了用于传感应用的声学延迟线,赛道谐振器和曲线波导。为了评估该平台对新兴量子技术的前景,我们表征了低温下的损耗,并在4开尔文下测量了50,000数量级的质量因子。最后,我们演示了这些电路中的声子四波混频,并测量了非线性系数,以提供相关参数过程所需功率的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High performance photonic microwave filters based on a 50GHz FSR optical soliton crystal Kerr micro-comb Ultra-high bandwidth fiber-optic data transmission with a single chip source High order pulse-echo (HOPE) ultrasound Data-driven modelling of scalable spinodoid structures for energy absorption Radioplasmonics: design of plasmonic milli-particles in air and absorbing media for antenna communication and human-body in-vivo applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1