Preparation and Properties of Clay/SEBS Intercalated Composites

T. Yamaguchi, E. Yamada
{"title":"Preparation and Properties of Clay/SEBS Intercalated Composites","authors":"T. Yamaguchi, E. Yamada","doi":"10.2324/EJSM.2.1","DOIUrl":null,"url":null,"abstract":"Clay/polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymer (SEBS) intercalated composites were prepared by melt-blending. The clays were a pristine montmorillonite (Mt) and three organically modified montmorillonites (organo-Mts) with different amounts of distearyldimethylammonium (D18) cation. The amounts of D18 were 50, 70 and 100% of the cation exchange capacity (denoted as D18Mt(50), D18Mt(70) and D18Mt(100), respectively). The clay/SEBS composites were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD). The dynamic mechanical analysis (DMA) and the tensile properties were also examined.The size of agglomerated clay particles decreased with the increasing amount of D18. The FE-SEM image of D18Mt(100)/SEBS revealed that the clay particles were dispersed at the sub-μm level (100–500 nm). The XRD patterns suggested that the SEBS chains were inserted into the interlayers of the organo-Mts. The DMA curves indicated that the addition of the organo-Mts produced an increase in the storage modulus in the rubbery plateau region, but a slight decrease in the glass transition temperature of the polystyrene domains. The tensile properties of the organo-Mt/SEBS composites were higher than those of the unmodified Mt/SEBS. D18Mt(100)/SEBS displayed an improved tensile modulus, tear strength and hardness compared to pure SEBS, without sacrificing the tensile strength and elongation at break.","PeriodicalId":11628,"journal":{"name":"E-journal of Soft Materials","volume":"13 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"E-journal of Soft Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2324/EJSM.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Clay/polystyrene-b-poly(ethylene-co-butylene)-b-polystyrene triblock copolymer (SEBS) intercalated composites were prepared by melt-blending. The clays were a pristine montmorillonite (Mt) and three organically modified montmorillonites (organo-Mts) with different amounts of distearyldimethylammonium (D18) cation. The amounts of D18 were 50, 70 and 100% of the cation exchange capacity (denoted as D18Mt(50), D18Mt(70) and D18Mt(100), respectively). The clay/SEBS composites were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction analysis (XRD). The dynamic mechanical analysis (DMA) and the tensile properties were also examined.The size of agglomerated clay particles decreased with the increasing amount of D18. The FE-SEM image of D18Mt(100)/SEBS revealed that the clay particles were dispersed at the sub-μm level (100–500 nm). The XRD patterns suggested that the SEBS chains were inserted into the interlayers of the organo-Mts. The DMA curves indicated that the addition of the organo-Mts produced an increase in the storage modulus in the rubbery plateau region, but a slight decrease in the glass transition temperature of the polystyrene domains. The tensile properties of the organo-Mt/SEBS composites were higher than those of the unmodified Mt/SEBS. D18Mt(100)/SEBS displayed an improved tensile modulus, tear strength and hardness compared to pure SEBS, without sacrificing the tensile strength and elongation at break.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粘土/SEBS插层复合材料的制备及性能研究
采用熔融共混法制备了粘土/聚苯乙烯-b-聚(乙烯-共丁烯)-b-聚苯乙烯三嵌段共聚物(SEBS)插层复合材料。粘土是一种原始蒙脱土(Mt)和三种有机改性蒙脱土(organo-Mts),具有不同量的二硬脂基二甲基铵(D18)阳离子。D18的用量分别为阳离子交换容量的50%、70%和100%(分别记为D18Mt(50)、D18Mt(70)和D18Mt(100))。采用场发射扫描电镜(FE-SEM)、x射线衍射分析(XRD)对粘土/SEBS复合材料进行了表征。动态力学分析(DMA)和拉伸性能也进行了测试。随着D18添加量的增加,黏土颗粒团聚度减小。D18Mt(100)/SEBS的FE-SEM图像显示,粘土颗粒分散在亚μm级(100 - 500 nm)。XRD谱图表明,SEBS链插入到有机mts的中间层中。DMA曲线表明,有机mts的加入提高了橡胶平台区的储存模量,但降低了聚苯乙烯区域的玻璃化转变温度。有机Mt/SEBS复合材料的拉伸性能高于未改性Mt/SEBS。与纯SEBS相比,D18Mt(100)/SEBS在不牺牲拉伸强度和断裂伸长率的情况下,表现出更高的拉伸模量、撕裂强度和硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal and Physical Properties of Polyurethanes Crosslinked by Polyrotaxanes—Influence of Polyrotaxane structures and Isocyanate Index— Evaluation on Cytotoxicity of Natural Rubber Latex Nanoparticles and Application in Bone Tissue Engineering Particle Alignment Condition and Size Influence on the d 33 of the Pseudo-1-3 Piezoelectric Ceramic/Rubber Composite Synthesis and Characterization of Polyurethanes Crosslinked by Polyrotaxanes of Two Filling Ratios of α-Cyclodextrin and with Two Modification Ratios of Polyurethane Chain Nylon 66 Nanofiber Sheets Prepared by Carbon Dioxide Laser Supersonic Multi-drawing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1