Bükre Yıldırım Külekci, Uğur Karabey, Sevtap SELCUK-KESTEL
{"title":"Assessment of dependent risk using extreme value theory in a time-varying framework","authors":"Bükre Yıldırım Külekci, Uğur Karabey, Sevtap SELCUK-KESTEL","doi":"10.15672/hujms.992699","DOIUrl":null,"url":null,"abstract":"Several extreme events in history have shown that the low probability and high impact extreme values may result in catastrophic losses. In this paper, we propose the use of extreme value theory with a time-varying framework to model the bivariate dependent insurance occurrences and provide more reliable risk measures, such as value at risk and expected shortfall. In this paper three models are considered; time series for the underlying volatility of the data, extreme value theory for the tail estimation, and copula to model the dependence structure are combined. The performance of the proposed generalized Pareto-GARCH-Copula model is tested using the violation numbers and backtesting methods. We then aim to assess the combined model in terms of its effectiveness in reducing the ruin probability. Results show that, compared to well-known traditional methods, which may underestimate the extreme risks, the dynamic generalized Pareto-GARCH-Copula model captures better the real-life data's behavior and results in lower ruin probabilities for heavy-tailed and non-conventional dependent insurance data.","PeriodicalId":55078,"journal":{"name":"Hacettepe Journal of Mathematics and Statistics","volume":"11 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hacettepe Journal of Mathematics and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.15672/hujms.992699","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Several extreme events in history have shown that the low probability and high impact extreme values may result in catastrophic losses. In this paper, we propose the use of extreme value theory with a time-varying framework to model the bivariate dependent insurance occurrences and provide more reliable risk measures, such as value at risk and expected shortfall. In this paper three models are considered; time series for the underlying volatility of the data, extreme value theory for the tail estimation, and copula to model the dependence structure are combined. The performance of the proposed generalized Pareto-GARCH-Copula model is tested using the violation numbers and backtesting methods. We then aim to assess the combined model in terms of its effectiveness in reducing the ruin probability. Results show that, compared to well-known traditional methods, which may underestimate the extreme risks, the dynamic generalized Pareto-GARCH-Copula model captures better the real-life data's behavior and results in lower ruin probabilities for heavy-tailed and non-conventional dependent insurance data.
期刊介绍:
Hacettepe Journal of Mathematics and Statistics covers all aspects of Mathematics and Statistics. Papers on the interface between Mathematics and Statistics are particularly welcome, including applications to Physics, Actuarial Sciences, Finance and Economics.
We strongly encourage submissions for Statistics Section including current and important real world examples across a wide range of disciplines. Papers have innovations of statistical methodology are highly welcome. Purely theoretical papers may be considered only if they include popular real world applications.