Long Zheng, Jieshan Zhao, Yu Huang, Qinggang Wang, Zhen Zeng, Jingling Xue, Xiaofei Liao, Hai Jin
{"title":"Spara: An Energy-Efficient ReRAM-Based Accelerator for Sparse Graph Analytics Applications","authors":"Long Zheng, Jieshan Zhao, Yu Huang, Qinggang Wang, Zhen Zeng, Jingling Xue, Xiaofei Liao, Hai Jin","doi":"10.1109/IPDPS47924.2020.00077","DOIUrl":null,"url":null,"abstract":"Resistive random access memory (ReRAM) addresses the high memory bandwidth requirement challenge of graph analytics by integrating the computing logic in the memory. Due to the matrix-structured crossbar architecture, existing ReRAM-based accelerators, when handling real-world graphs that often have the skewed degree distribution, suffer from the severe sparsity problem arising from zero fillings and activation nondeterminism, incurring substantial ineffectual computations.In this paper, we observe that the sparsity sources lie in the consecutive mapping of source and destination vertex index onto the wordline and bitline of a crossbar. Although exhaustive graph reordering improves the sparsity-induced inefficiency, its totally-random (source and destination) vertex mapping leads to expensive overheads. This work exploits the insight in a mid-point vertex mapping with the random wordlines and consecutive bitlines. A cost-effective preprocessing is proposed to exploit the insight by rapidly exploring the crossbar-fit vertex reorderings but ignores the sparsity arising from activation dynamics. We present a novel ReRAM-based graph analytics accelerator, named Spara, which can maximize the workload density of crossbars dynamically by using a tightly-coupled bank parallel architecture further proposed. Results on real-world and synthesized graphs show that Spara outperforms GraphR and GraphSAR by 8.21 × and 5.01 × in terms of performance, and by 8.97 × and 5.68× in terms of energy savings (on average), while incurring a reasonable (<9.98%) pre-processing overhead.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"7 1","pages":"696-707"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Resistive random access memory (ReRAM) addresses the high memory bandwidth requirement challenge of graph analytics by integrating the computing logic in the memory. Due to the matrix-structured crossbar architecture, existing ReRAM-based accelerators, when handling real-world graphs that often have the skewed degree distribution, suffer from the severe sparsity problem arising from zero fillings and activation nondeterminism, incurring substantial ineffectual computations.In this paper, we observe that the sparsity sources lie in the consecutive mapping of source and destination vertex index onto the wordline and bitline of a crossbar. Although exhaustive graph reordering improves the sparsity-induced inefficiency, its totally-random (source and destination) vertex mapping leads to expensive overheads. This work exploits the insight in a mid-point vertex mapping with the random wordlines and consecutive bitlines. A cost-effective preprocessing is proposed to exploit the insight by rapidly exploring the crossbar-fit vertex reorderings but ignores the sparsity arising from activation dynamics. We present a novel ReRAM-based graph analytics accelerator, named Spara, which can maximize the workload density of crossbars dynamically by using a tightly-coupled bank parallel architecture further proposed. Results on real-world and synthesized graphs show that Spara outperforms GraphR and GraphSAR by 8.21 × and 5.01 × in terms of performance, and by 8.97 × and 5.68× in terms of energy savings (on average), while incurring a reasonable (<9.98%) pre-processing overhead.