Shunyu Jiang , Fuli Feng , Weijian Chen , Xiang Li , Xiangnan He
{"title":"Structure-enhanced meta-learning for few-shot graph classification","authors":"Shunyu Jiang , Fuli Feng , Weijian Chen , Xiang Li , Xiangnan He","doi":"10.1016/j.aiopen.2021.08.001","DOIUrl":null,"url":null,"abstract":"<div><p>Graph classification is a highly impactful task that plays a crucial role in a myriad of real-world applications such as molecular property prediction and protein function prediction. Aiming to handle the new classes with limited labeled graphs, few-shot graph classification has become a bridge of existing graph classification solutions and practical usage. This work explores the potential of metric-based meta-learning for solving few-shot graph classification. We highlight the importance of considering structural characteristics in the solution and propose a novel framework which explicitly considers <em>global structure</em> and <em>local structure</em> of the input graph. An implementation upon GIN, named SMF-GIN, is tested on two datasets, Chembl and TRIANGLES, where extensive experiments validate the effectiveness of the proposed method. The Chembl is constructed to fill in the gap of lacking large-scale benchmark for few-shot graph classification evaluation, which is released together with the implementation of SMF-GIN at: <span>https://github.com/jiangshunyu/SMF-GIN</span><svg><path></path></svg>.</p></div>","PeriodicalId":100068,"journal":{"name":"AI Open","volume":"2 ","pages":"Pages 160-167"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.aiopen.2021.08.001","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI Open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266665102100022X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Graph classification is a highly impactful task that plays a crucial role in a myriad of real-world applications such as molecular property prediction and protein function prediction. Aiming to handle the new classes with limited labeled graphs, few-shot graph classification has become a bridge of existing graph classification solutions and practical usage. This work explores the potential of metric-based meta-learning for solving few-shot graph classification. We highlight the importance of considering structural characteristics in the solution and propose a novel framework which explicitly considers global structure and local structure of the input graph. An implementation upon GIN, named SMF-GIN, is tested on two datasets, Chembl and TRIANGLES, where extensive experiments validate the effectiveness of the proposed method. The Chembl is constructed to fill in the gap of lacking large-scale benchmark for few-shot graph classification evaluation, which is released together with the implementation of SMF-GIN at: https://github.com/jiangshunyu/SMF-GIN.