Temporal representation for scientific data provenance

Peng Chen, Beth Plale, M. Aktaş
{"title":"Temporal representation for scientific data provenance","authors":"Peng Chen, Beth Plale, M. Aktaş","doi":"10.1109/eScience.2012.6404477","DOIUrl":null,"url":null,"abstract":"Provenance of digital scientific data is an important piece of the metadata of a data object. It can however grow voluminous quickly because the granularity level of capture can be high. It can also be quite feature rich. We propose a representation of the provenance data based on logical time that reduces the feature space. Creating time and frequency domain representations of the provenance, we apply clustering, classification and association rule mining to the abstract representations to determine the usefulness of the temporal representation. We evaluate the temporal representation using an existing 10 GB database of provenance captured from a range of scientific workflows.","PeriodicalId":6364,"journal":{"name":"2012 IEEE 8th International Conference on E-Science","volume":"13 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 8th International Conference on E-Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2012.6404477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Provenance of digital scientific data is an important piece of the metadata of a data object. It can however grow voluminous quickly because the granularity level of capture can be high. It can also be quite feature rich. We propose a representation of the provenance data based on logical time that reduces the feature space. Creating time and frequency domain representations of the provenance, we apply clustering, classification and association rule mining to the abstract representations to determine the usefulness of the temporal representation. We evaluate the temporal representation using an existing 10 GB database of provenance captured from a range of scientific workflows.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科学数据来源的时态表示
数字科学数据的来源是数据对象元数据的重要组成部分。但是,由于捕获的粒度级别可能很高,因此它可以快速增长。它也可以是相当丰富的功能。提出了一种基于逻辑时间的来源数据表示方法,减少了特征空间。我们创建了来源的时域和频域表示,并对抽象表示应用聚类、分类和关联规则挖掘来确定时间表示的有用性。我们使用从一系列科学工作流程中捕获的现有的10gb来源数据库来评估时间表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Scientific Workflow Interchanging through Patterns: Reversals and Lessons Learned Shape Analysis Using the Spectral Graph Wavelet Transform Provenance analysis: Towards quality provenance Fast confidential search for bio-medical data using Bloom filters and Homomorphic Cryptography Calibration of watershed models using cloud computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1