DEVELOPMENT OF ELECTROSPUN POLY(VINYLPYRROLIDONE) (PVP) NANOFIBER MATS LOADED BY CALENDULA OFFICINALIS EXTRACT AND COENZYME Q10

Sanja Rackov, A. Nešić, M. Vraneš, B. Pilić
{"title":"DEVELOPMENT OF ELECTROSPUN POLY(VINYLPYRROLIDONE) (PVP) NANOFIBER MATS LOADED BY CALENDULA OFFICINALIS EXTRACT AND COENZYME Q10","authors":"Sanja Rackov, A. Nešić, M. Vraneš, B. Pilić","doi":"10.46793/iccbi21.169r","DOIUrl":null,"url":null,"abstract":"Electrospun systems can be applied to various areas, particularly in biomedicine for skin treatment. The fabricated nanofibers represent an interconnected three-dimensional network with a high surface area to volume ratio providing structural and morphological similarities with the extracellular matrix. Hence, facilitate the removal of exudates, promote gaseous exchange, conform to the contour of the treated area and in the case of drug-loaded nanofibers resulting in improved bioavailability. Polyvinylpyrrolidone was selected as a polymer carrier due to its biocompatible, hydrophilic nature with good chemical and mechanical properties, approved by the U.S. FDA (Food and Drug Administration) as a safe polymer for biomedical and food applications. Calendula officinalis or Marigold extract is one of the oldest medical plants with numerous proven pharmacological effects including anti-inflammatory, antibacterial/antifungal and wound healing activity related to the components of the flowers such as sesquiterpenes, saponins, triterpenes, flavonoids. Coenzyme Q10 (CoQ10, Ubiquinone) is a naturally occurring oil-soluble antioxidant and anti-inflammatory agent that supports collagen production, mostly popularized as an anti-aging ingredient in skincare products for topical use. Novel Marigold extract and CoQ10–loaded polyvinylpyrrolidone nanofibers intended for skin treatment and wound therapy were developed using the electrospinning technique. The presence of functional groups on the nanofibrous surfaces was confirmed by FTIR analysis, the SEM images show the average size of the obtained nanomats and the thermal properties were investigated via DSC analysis.","PeriodicalId":9171,"journal":{"name":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Book of Proceedings: 1st International Conference on Chemo and BioInformatics,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46793/iccbi21.169r","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrospun systems can be applied to various areas, particularly in biomedicine for skin treatment. The fabricated nanofibers represent an interconnected three-dimensional network with a high surface area to volume ratio providing structural and morphological similarities with the extracellular matrix. Hence, facilitate the removal of exudates, promote gaseous exchange, conform to the contour of the treated area and in the case of drug-loaded nanofibers resulting in improved bioavailability. Polyvinylpyrrolidone was selected as a polymer carrier due to its biocompatible, hydrophilic nature with good chemical and mechanical properties, approved by the U.S. FDA (Food and Drug Administration) as a safe polymer for biomedical and food applications. Calendula officinalis or Marigold extract is one of the oldest medical plants with numerous proven pharmacological effects including anti-inflammatory, antibacterial/antifungal and wound healing activity related to the components of the flowers such as sesquiterpenes, saponins, triterpenes, flavonoids. Coenzyme Q10 (CoQ10, Ubiquinone) is a naturally occurring oil-soluble antioxidant and anti-inflammatory agent that supports collagen production, mostly popularized as an anti-aging ingredient in skincare products for topical use. Novel Marigold extract and CoQ10–loaded polyvinylpyrrolidone nanofibers intended for skin treatment and wound therapy were developed using the electrospinning technique. The presence of functional groups on the nanofibrous surfaces was confirmed by FTIR analysis, the SEM images show the average size of the obtained nanomats and the thermal properties were investigated via DSC analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金盏花提取物和辅酶q10负载聚乙烯吡咯烷酮(pvp)纳米纤维垫的研制
静电纺系统可以应用于各个领域,特别是在皮肤治疗的生物医学中。所制备的纳米纤维呈现出相互连接的三维网络,具有高表面积体积比,与细胞外基质具有结构和形态上的相似性。因此,有利于去除渗出物,促进气体交换,符合处理区域的轮廓,并且在载药纳米纤维的情况下,导致生物利用度的提高。选择聚乙烯吡咯烷酮作为聚合物载体,是因为它具有生物相容性、亲水性和良好的化学和机械性能,被美国FDA(食品和药物管理局)批准为生物医学和食品应用的安全聚合物。金盏菊或万寿菊提取物是最古老的药用植物之一,具有许多已证实的药理作用,包括抗炎、抗菌/抗真菌和伤口愈合活性,这些作用与花的成分有关,如倍半萜、皂苷、三萜、黄酮类化合物。辅酶Q10(辅酶Q10,泛醌)是一种天然存在的油溶性抗氧化剂和抗炎剂,支持胶原蛋白的产生,主要作为局部使用的护肤产品中的抗衰老成分而普及。利用静电纺丝技术制备了新型万金菊提取物和载辅酶q10的聚乙烯吡咯烷酮纳米纤维,用于皮肤和伤口治疗。FTIR分析证实了纳米纤维表面存在官能团,SEM图像显示了纳米纤维的平均尺寸,DSC分析了纳米纤维的热性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ELECTROPHILIC ORGANOSELENIUM COMPOUNDS AND SARS-COV-2: PRO-OXIDANT ACTIVITY AS A MORE PROMISING WAY TOWARDS THE DRUGGABILITY DIRECT SCAVENGING ACTIVITY OF 4,7-DIHYDROXYCOUMARIN DERIVATIVE TOWARDS SERIES OF CHLOROMETHYLPEROXY RADICALS PLATINUM(IV) COMPLEX AND ITS CORRESPONDING LIGAND SUPPRESS CELL MOTILITY AND PROMOTE EXPRESSION OF FRIZZLED-7 RECEPTOR IN COLORECTAL CANCER CELLS A META-HEURISTIC MULTI-OBJECTIVE APPROACH TO THE MODEL SELECTION OF CONVOLUTION NEURAL NETWORKS FOR URINARY BLADDER CANCER DIAGNOSIS NOVEL LIGANDS OF HUMAN CYP7 ENZYMES – POSSIBLE MODULATORS OF CHOLESTEROL BLOOD LEVEL: COMPUTER SIMULATION STUDIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1