VITAL APP: Development and User Acceptability of an IoT-Based Patient Monitoring Device for Synchronous Measurements of Vital Signs

Manuel B. Garcia, Niño U. Pilueta, Moises F. Jardiniano
{"title":"VITAL APP: Development and User Acceptability of an IoT-Based Patient Monitoring Device for Synchronous Measurements of Vital Signs","authors":"Manuel B. Garcia, Niño U. Pilueta, Moises F. Jardiniano","doi":"10.1109/HNICEM48295.2019.9072724","DOIUrl":null,"url":null,"abstract":"Vital signs monitoring is a customarily repetitive, tedious part of patient care that nonetheless requires constant measurements and documentations to avert significant adverse consequences. Routinely performed by nurses, measurements of vital signs are recorded at regular intervals for safeguarding patient safety yet some evidence concerning the frequency of noncompliance in vital sign collection as well as the inaccuracy of vital sign measurements is still at large. This paper covered the development of a patient monitoring device using hardware modules such as pulse rate sensor, sphygmomanometer, and body temperature sensor that communicates through wireless technology protocol based on IEEE 802.15.4 standard for synchronous measurements of multiple vital signs such as body temperature, pulse rate, and blood pressure. Physiological data accuracy based from the Modified Early Warning Score was measured by Bland-Altman and Pearson correlation analysis, and user acceptability was inspected using IoT technology trust model with the aid of health professionals and patients from hospitals and diagnostic centers. Vital sign measurements by VITAL APP and health professionals correlated well, and the device was accepted as an important tool in patient monitoring.","PeriodicalId":6733,"journal":{"name":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management ( HNICEM )","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HNICEM48295.2019.9072724","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Vital signs monitoring is a customarily repetitive, tedious part of patient care that nonetheless requires constant measurements and documentations to avert significant adverse consequences. Routinely performed by nurses, measurements of vital signs are recorded at regular intervals for safeguarding patient safety yet some evidence concerning the frequency of noncompliance in vital sign collection as well as the inaccuracy of vital sign measurements is still at large. This paper covered the development of a patient monitoring device using hardware modules such as pulse rate sensor, sphygmomanometer, and body temperature sensor that communicates through wireless technology protocol based on IEEE 802.15.4 standard for synchronous measurements of multiple vital signs such as body temperature, pulse rate, and blood pressure. Physiological data accuracy based from the Modified Early Warning Score was measured by Bland-Altman and Pearson correlation analysis, and user acceptability was inspected using IoT technology trust model with the aid of health professionals and patients from hospitals and diagnostic centers. Vital sign measurements by VITAL APP and health professionals correlated well, and the device was accepted as an important tool in patient monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
VITAL APP:基于物联网的患者监测设备的开发和用户可接受性,用于同步测量生命体征
生命体征监测通常是病人护理中重复、繁琐的一部分,尽管如此,它仍然需要不断的测量和记录,以避免严重的不良后果。为了保障患者的安全,生命体征的测量通常由护士进行,定期记录,但关于生命体征采集不合规的频率以及生命体征测量不准确的一些证据仍然存在。本文介绍了一种利用脉搏传感器、血压计、体温传感器等硬件模块,通过基于IEEE 802.15.4标准的无线通信协议,同步测量体温、脉搏、血压等多种生命体征的患者监护设备的开发。基于修正预警评分的生理数据准确性采用Bland-Altman和Pearson相关分析进行测量,用户接受度采用物联网技术信任模型,由医院和诊断中心的卫生专业人员和患者进行检验。Vital APP的生命体征测量与卫生专业人员的生命体征测量具有良好的相关性,该设备被接受为患者监护的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Innovations on Advanced Transportation Systems for Local Applications An Aquaculture-Based Binary Classifier for Fish Detection using Multilayer Artificial Neural Network Design and Analysis of Hip Joint DOFs for Lower Limb Robotic Exoskeleton Sum of Absolute Difference-based Rate-Distortion Optimization Cost Function for H.265/HEVC Intra-Mode Prediction Optimization and drying kinetics of the convective drying of microalgal biomat (lab-lab)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1