Evaluation of the self-healing effect in cement-based materials with embedded cementitious capsules by means of Acoustic Emission techniques

G. Anglani, P. M. Montanari, Jean Marc Tulliani, G. Lacidogna, P. Antonaci
{"title":"Evaluation of the self-healing effect in cement-based materials with embedded cementitious capsules by means of Acoustic Emission techniques","authors":"G. Anglani, P. M. Montanari, Jean Marc Tulliani, G. Lacidogna, P. Antonaci","doi":"10.1051/matecconf/202337804004","DOIUrl":null,"url":null,"abstract":"Due to its low tensile strength and the presence of defects brought on by improper construction methods or other factors, cracks in concrete are practically inevitable. For reinforced-concrete structures, even if cracks do not necessarily increase the risk of collapse, they unquestionably hinder aspects such as service life. Self-healing cementitious materials have been developed because of growing concern for the security and sustainability of structures. For these new materials to be used in actual structures, it is essential to conduct research into the self-repair effect that they may offer, and possibly quantify it directly on-site, by means of non-destructive methods. In this sense, the objective of this work is to use Acoustic Emission (AE) analyses to non-destructively characterise the response of an autonomic capsule-based system, as a function of the specific polymeric healing agents contained in the capsules. Comparisons will be made between the reference and selfhealing specimens, and between the different self-healing specimens themselves, through the analysis of such parameters as the ultimate load, absorbed fracture energy, and emitted Acoustic Emission (AE) energy. Such type of analysis can give valuable insights not only on quantitative but also on qualitative aspects (such as the level of brittleness or ductility introduced by the specific self-healing system adopted) in view of possible applications in real structures.","PeriodicalId":18309,"journal":{"name":"MATEC Web of Conferences","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MATEC Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/matecconf/202337804004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Due to its low tensile strength and the presence of defects brought on by improper construction methods or other factors, cracks in concrete are practically inevitable. For reinforced-concrete structures, even if cracks do not necessarily increase the risk of collapse, they unquestionably hinder aspects such as service life. Self-healing cementitious materials have been developed because of growing concern for the security and sustainability of structures. For these new materials to be used in actual structures, it is essential to conduct research into the self-repair effect that they may offer, and possibly quantify it directly on-site, by means of non-destructive methods. In this sense, the objective of this work is to use Acoustic Emission (AE) analyses to non-destructively characterise the response of an autonomic capsule-based system, as a function of the specific polymeric healing agents contained in the capsules. Comparisons will be made between the reference and selfhealing specimens, and between the different self-healing specimens themselves, through the analysis of such parameters as the ultimate load, absorbed fracture energy, and emitted Acoustic Emission (AE) energy. Such type of analysis can give valuable insights not only on quantitative but also on qualitative aspects (such as the level of brittleness or ductility introduced by the specific self-healing system adopted) in view of possible applications in real structures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用声发射技术评价嵌入胶凝胶囊的水泥基材料的自愈效果
由于混凝土本身抗拉强度低,加上施工方法不当或其他因素造成的缺陷,混凝土裂缝几乎是不可避免的。对于钢筋混凝土结构,即使裂缝不一定会增加倒塌的风险,但它们无疑会影响使用寿命等方面。自愈胶结材料的发展是由于人们对结构的安全性和可持续性的日益关注。为了将这些新材料应用于实际结构中,有必要对它们可能提供的自我修复效果进行研究,并可能通过非破坏性方法直接在现场进行量化。从这个意义上说,这项工作的目的是使用声发射(AE)分析来非破坏性地表征基于自主胶囊的系统的响应,作为胶囊中包含的特定聚合物愈合剂的功能。通过对极限载荷、吸收断裂能、发射声发射能等参数的分析,对参考试件与自愈试件、不同自愈试件本身进行比较。这种类型的分析不仅可以在定量方面,而且可以在定性方面(例如所采用的特定自愈系统引入的脆性或延性水平)提供有价值的见解,考虑到实际结构的可能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
342
审稿时长
6 weeks
期刊介绍: MATEC Web of Conferences is an Open Access publication series dedicated to archiving conference proceedings dealing with all fundamental and applied research aspects related to Materials science, Engineering and Chemistry. All engineering disciplines are covered by the aims and scope of the journal: civil, naval, mechanical, chemical, and electrical engineering as well as nanotechnology and metrology. The journal concerns also all materials in regard to their physical-chemical characterization, implementation, resistance in their environment… Other subdisciples of chemistry, such as analytical chemistry, petrochemistry, organic chemistry…, and even pharmacology, are also welcome. MATEC Web of Conferences offers a wide range of services from the organization of the submission of conference proceedings to the worldwide dissemination of the conference papers. It provides an efficient archiving solution, ensuring maximum exposure and wide indexing of scientific conference proceedings. Proceedings are published under the scientific responsibility of the conference editors.
期刊最新文献
Classification of intracranial hemorrhage (CT) images using CNN-LSTM method and image-based GLCM features Study of pathways to reduce the energy consumption of the CO2 capture process by absorption-regeneration Optimizations of the internal structure of the reel of a double rope winder The Performance and Cost Analysis on Bio Fuel Blends for Internal Combustion Engine Physicochemical studies of composite coatings during accelerated tests for atmospheric corrosion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1