Introduction of machine learning for astronomy (hands-on workshop)

Q4 Physics and Astronomy Astronomical and Astrophysical Transactions Pub Date : 2022-12-15 DOI:10.17184/eac.7535
Yu Wang, R. Moradi, M. H. Z. Haghighi, F. Rastegarnia
{"title":"Introduction of machine learning for astronomy (hands-on workshop)","authors":"Yu Wang, R. Moradi, M. H. Z. Haghighi, F. Rastegarnia","doi":"10.17184/eac.7535","DOIUrl":null,"url":null,"abstract":"This article is based on the tutorial we gave at the hands-on workshop of the ICRANet-ISFAHAN Astronomy Meeting. We first introduce the basic theory of machine learning and sort out the whole process of training a neural network. We then demonstrate this process with an example of inferring redshifts from SDSS spectra. To emphasize that machine learning for astronomy is easy to get started, we demonstrate that the most basic CNN network can be used to obtain high accuracy, we also show that with simple modifications, the network can be converted for classification problems and also to process gravitational wave data.","PeriodicalId":52135,"journal":{"name":"Astronomical and Astrophysical Transactions","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomical and Astrophysical Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17184/eac.7535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

This article is based on the tutorial we gave at the hands-on workshop of the ICRANet-ISFAHAN Astronomy Meeting. We first introduce the basic theory of machine learning and sort out the whole process of training a neural network. We then demonstrate this process with an example of inferring redshifts from SDSS spectra. To emphasize that machine learning for astronomy is easy to get started, we demonstrate that the most basic CNN network can be used to obtain high accuracy, we also show that with simple modifications, the network can be converted for classification problems and also to process gravitational wave data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
天文学机器学习简介(实践工作坊)
这篇文章是基于我们在ICRANet-ISFAHAN天文学会议的实践研讨会上提供的教程。我们首先介绍了机器学习的基本理论,梳理了训练神经网络的整个过程。然后,我们用一个从SDSS光谱推断红移的例子来演示这个过程。为了强调天文学的机器学习是容易入门的,我们展示了最基本的CNN网络可以获得很高的精度,我们还展示了通过简单的修改,网络可以转换为分类问题,也可以处理引力波数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Astronomical and Astrophysical Transactions
Astronomical and Astrophysical Transactions Physics and Astronomy-Instrumentation
CiteScore
0.40
自引率
0.00%
发文量
16
期刊介绍: Astronomical and Astrophysical Transactions (AApTr) journal is being published jointly by the Euro-Asian Astronomical Society and Cambridge Scientific Publishers, The journal provides a forum for the rapid publication of material from all modern and classical fields of astronomy and astrophysics, as well as material concerned with astronomical instrumentation and related fundamental sciences. It includes both theoretical and experimental original research papers, short communications, review papers and conference reports.
期刊最新文献
"BV Ic" light curves of type II Cepheids and RV Tau type stars From the launch of the first satellite to the global problem of space debris The spectroscopy of possible γ-ray background in the white dwarf atmosphere Discrete flow of matter in the X-ray binary Her X-1 Physical bases of the short-term forecast of earthquakes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1