{"title":"Environmental benign RP-HPLC method for the simultaneous estimation of anti-hypertensive drugs using analytical quality by design","authors":"N. Dharuman, K. Lakshmi, M. Krishnan","doi":"10.1080/17518253.2023.2214176","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n Green analytical procedures replace harmful organic modifiers with green solvents without affecting chromatographic performance, enabling industries and research laboratories to develop green analytical methods. Benidipine hydrochloride (BEN) and Chlorthalidone (CHD) were used to treat hypertension. The literature indicates that no method for determining BEN and CHD combines RP-HPLC with green Analytical Quality by Design (AQbD) for long-term use. This study aimed to develop a green RP-HPLC for determining BEN and CHD by incorporating analytical quality by design with green chemistry principles. A central composite design was used for optimization, with 40% ethanol content and flow rate chosen as critical variables. Separation was achieved using Agilent Eclipse Plus (C18, 250 mm × 4.6 mm i.d, 5 μm) with a mobile phase of ethanol and potassium dihydrogen orthophosphate (orthophosphoric acid to 3.5) in a ratio of 40:60 v/v at 1 ml/min, detection wavelength at 230 nm. Retention times for CHD and BEN were 3.1 and 5.1 min, respectively. The concentration ranges for BEN and CHD were 3.2–4.8 μg/ml and 5.0–7.5 μg/ml, respectively. The proposed method was eco-friendly and assessed using green evaluation tools. Thus, AQBD and green technologies provide regular BEN and CHD analysis in pharmaceutical formulations without environmental impact. GRAPHICAL ABSTRACT","PeriodicalId":12768,"journal":{"name":"Green Chemistry Letters and Reviews","volume":"38 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Chemistry Letters and Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/17518253.2023.2214176","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT
Green analytical procedures replace harmful organic modifiers with green solvents without affecting chromatographic performance, enabling industries and research laboratories to develop green analytical methods. Benidipine hydrochloride (BEN) and Chlorthalidone (CHD) were used to treat hypertension. The literature indicates that no method for determining BEN and CHD combines RP-HPLC with green Analytical Quality by Design (AQbD) for long-term use. This study aimed to develop a green RP-HPLC for determining BEN and CHD by incorporating analytical quality by design with green chemistry principles. A central composite design was used for optimization, with 40% ethanol content and flow rate chosen as critical variables. Separation was achieved using Agilent Eclipse Plus (C18, 250 mm × 4.6 mm i.d, 5 μm) with a mobile phase of ethanol and potassium dihydrogen orthophosphate (orthophosphoric acid to 3.5) in a ratio of 40:60 v/v at 1 ml/min, detection wavelength at 230 nm. Retention times for CHD and BEN were 3.1 and 5.1 min, respectively. The concentration ranges for BEN and CHD were 3.2–4.8 μg/ml and 5.0–7.5 μg/ml, respectively. The proposed method was eco-friendly and assessed using green evaluation tools. Thus, AQBD and green technologies provide regular BEN and CHD analysis in pharmaceutical formulations without environmental impact. GRAPHICAL ABSTRACT
期刊介绍:
Green Chemistry Letters and Reviews is an Open Access, peer-reviewed journal focused on rapid publication of innovative new syntheses and procedures that reduce or eliminate the use and generation of hazardous materials. Reviews of state-of-the-art green chemistry technologies are also included within the journal''s scope.
Green Chemistry Letters and Reviews is divided into three overlapping topic areas: research, education, and industrial implementation. The journal publishes both letters, which concisely communicate the most time-sensitive results, and reviews, which aid researchers in understanding the state of science on important green chemistry topics. Submissions are encouraged which apply the 12 principles of green chemistry to:
-Green Chemistry Education-
Synthetic Reaction Pathways-
Research and Process Analytical Techniques-
Separation and Purification Technologies-
Renewable Feedstocks-
Degradable Products