Facile Manufacturing Route for Magneto‐Responsive Soft Actuators

Julia A. Carpenter, T. Eberle, S. Schuerle, A. Rafsanjani, A. Studart
{"title":"Facile Manufacturing Route for Magneto‐Responsive Soft Actuators","authors":"Julia A. Carpenter, T. Eberle, S. Schuerle, A. Rafsanjani, A. Studart","doi":"10.1002/aisy.202000283","DOIUrl":null,"url":null,"abstract":"Magnetically driven soft actuators are unique because they are fast, remote‐controlled, conformal to rigid objects, and safe to interact with humans. Despite these multiple functionalities, a broader utilization of such actuators is hindered by the high cost and equipment‐intensive nature of currently available manufacturing processes. Herein, a simple fabrication route for magneto‐responsive soft actuators is described using cost‐effective and broadly available raw materials and equipment. The method utilizes castable silicone resins that are loaded with magnetic particles and subsequently magnetized under an external magnetic field. The experimental investigation of silicone‐based composites prepared with particles of distinct chemistries, sizes, and morphologies enables the identification of the raw materials and magnetization conditions required for the process. This leads to functional soft actuators with programmable magnetic patterns that are capable of performing pick‐and‐place, lifting, catching, and moving tasks under the remote action of an external magnetic field. By removing manufacturing hurdles associated with costly raw materials and equipment, the proposed approach is expected to facilitate the design, implementation, and exploitation of the unique functionalities of magneto‐controlled soft actuators in a wider number of applications.","PeriodicalId":7187,"journal":{"name":"Advanced Intelligent Systems","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/aisy.202000283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Magnetically driven soft actuators are unique because they are fast, remote‐controlled, conformal to rigid objects, and safe to interact with humans. Despite these multiple functionalities, a broader utilization of such actuators is hindered by the high cost and equipment‐intensive nature of currently available manufacturing processes. Herein, a simple fabrication route for magneto‐responsive soft actuators is described using cost‐effective and broadly available raw materials and equipment. The method utilizes castable silicone resins that are loaded with magnetic particles and subsequently magnetized under an external magnetic field. The experimental investigation of silicone‐based composites prepared with particles of distinct chemistries, sizes, and morphologies enables the identification of the raw materials and magnetization conditions required for the process. This leads to functional soft actuators with programmable magnetic patterns that are capable of performing pick‐and‐place, lifting, catching, and moving tasks under the remote action of an external magnetic field. By removing manufacturing hurdles associated with costly raw materials and equipment, the proposed approach is expected to facilitate the design, implementation, and exploitation of the unique functionalities of magneto‐controlled soft actuators in a wider number of applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁响应式软执行器的简易制造路线
磁驱动的软执行器是独一无二的,因为它们快速,远程控制,与刚性物体保形,并且与人类安全互动。尽管具有这些多种功能,但由于目前可用的制造工艺的高成本和设备密集性,阻碍了此类执行器的广泛应用。本文描述了一种简单的磁致响应软执行器的制造路线,使用具有成本效益和广泛可用的原材料和设备。该方法利用可浇注的硅树脂,其装载磁性颗粒并随后在外部磁场下磁化。用不同化学、尺寸和形态的颗粒制备的硅基复合材料的实验研究可以确定该工艺所需的原材料和磁化条件。这导致了具有可编程磁模式的功能性软执行器,能够在外部磁场的远程作用下执行拾取放置,提升,捕获和移动任务。通过消除与昂贵的原材料和设备相关的制造障碍,所提出的方法有望在更广泛的应用中促进磁控软执行器的独特功能的设计、实现和开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Tactile Synthetic Tissue: from Soft Robotics to Hybrid Surgical Simulators Maximizing the Synaptic Efficiency of Ferroelectric Tunnel Junction Devices Using a Switching Mechanism Hidden in an Identical Pulse Programming Learning Scheme Enhancing Sensitivity across Scales with Highly Sensitive Hall Effect‐Based Auxetic Tactile Sensors 3D Printed Swordfish‐Like Wireless Millirobot Widened Attention‐Enhanced Atrous Convolutional Network for Efficient Embedded Vision Applications under Resource Constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1