{"title":"Robust adaptive speed control for DC motor using novel weighted E-modified MRAC","authors":"A. Humaidi, A. H. Hameed, Mustafa R. Hameed","doi":"10.1109/ICPCSI.2017.8392302","DOIUrl":null,"url":null,"abstract":"Novel Adaptive law modification termed “weighted e-modification” for MRAC is presented in this paper. Speed control of DC motor with mismatched disturbance load torque is considered; totally unknown model parameters and only upper bounded fast load torque are dealt with. The proposed modification approached the advantages of the performance of the non-modified MRAC and the robustness of the e-modified MRAC. The simulations results showed that weighted e-modification technique speed response has better performance than classical e-modification technique and the non-modified MRAC because it gathered the advantage of the two of performance and robustness; control action resulting from weighted e-modification had better performance than e-modification and avoided the robustness failure due to adaptive gains drift of the non-modified MRAC. MRAC adaptive gains drifted up to unbounded limit due to disturbance while uniform boundedness of adaptive gains are achieved by e-modification and weighted e-modification.","PeriodicalId":6589,"journal":{"name":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","volume":"4 1","pages":"313-319"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPCSI.2017.8392302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
Novel Adaptive law modification termed “weighted e-modification” for MRAC is presented in this paper. Speed control of DC motor with mismatched disturbance load torque is considered; totally unknown model parameters and only upper bounded fast load torque are dealt with. The proposed modification approached the advantages of the performance of the non-modified MRAC and the robustness of the e-modified MRAC. The simulations results showed that weighted e-modification technique speed response has better performance than classical e-modification technique and the non-modified MRAC because it gathered the advantage of the two of performance and robustness; control action resulting from weighted e-modification had better performance than e-modification and avoided the robustness failure due to adaptive gains drift of the non-modified MRAC. MRAC adaptive gains drifted up to unbounded limit due to disturbance while uniform boundedness of adaptive gains are achieved by e-modification and weighted e-modification.